To Chiến
Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{5x^2+4x+3}{x^2+2}\)
Câu cuối đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ \(\frac{16x^2-5x+3}{4x}=4x-\frac{5}{4}+\frac{3}{4x}\)
Áp dụng BDT cô-si có \(4x-\frac{5}{4}+\frac{3}{4x}\ge-\frac{5}{4}+2\sqrt{4x\times\frac{3}{4x}}=-\frac{5}{4}+2\times3=\frac{19}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow4x=\frac{3}{4x}\Leftrightarrow x=\frac{\sqrt{3}}{4}\)
>_ là lớn hơn hoặc bằng nha do bị lỗi chính tả
_< là bé hơn hoặc bằng
A,
2-5x >_ 3(2-x)
⇔ 2-5x >_ 6-3x
⇔ -5x+3x >_ 6-2
⇔ -2x >_ 3
⇔ x _< \(\dfrac{-3}{2}\)
Tập nghiệm { x / x _< \(\dfrac{-3}{2}\)}
B,
-4x + 3 _< 5x - 7
⇔ -4x - 5x _< -7 - 3
⇔ -9x _< -10
⇔ x >_ \(\dfrac{10}{9}\)
Tập nghiệm { x / x >_ \(\dfrac{10}{9}\) }
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
P=\(\frac{5x^2+4x+3}{x^2+2}\)=\(\frac{\left(x^2+2\right)+4x^2+4x+1}{x^2+2}\)=\(\frac{x^2+2}{x^2+2}\)+\(\frac{4x^2+4x+1}{x^2+2}\)=1+\(\frac{\left(2x+1\right)^2}{x^2+2}\)
Vì (2x+1)2> 0 \(\forall x\)
x2>0=>x2+2>0
=>1+\(\frac{5x^2+4x+3}{x^2+2}\)>1
Dấu = xảy ra khi 2x+1=0
=>x=\(\frac{-1}{2}\)
Vậy giá trị nhỏ nhất của P=1 tại x=\(\frac{-1}{2}\)