Cho a,b,c la do dai 3 canh cua mot tam giac co chu vi la 2. Chung minh \(a^2+b^2+c^2+2abc<2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ra ta có : a+b+c=2
Mà theo bđt tam giác thì
a < b + c
=> a + a < a + b + c
=> 2a < 2
=> a < 1 => a-1<0
Bạn làm tương tự thì có b<1 => b-1 <0 và c<1 => c-1<0
Nhân vế theo vế :
(1 - a)(1 - b)(1 - c) > 0
=> (1 – b – a + ab)(1 – c) > 0
=> 1 – c – b + bc – a + ac + ab – abc > 0
=> 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
=> 2abc < -2 + 2ab + 2bc + 2ca
=> a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
=> a² + b² + c² + 2abc < (a + b + c)² - 2
=> a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
=> a² + b² + c² + 2abc < 2 (đpcm
- k mình nhé <33
Tổng độ dài của 3 cạnh đầu là :
2/5 + 1 + 13/5 = 4 (m )
Cạnh thứ tư có đội dài là :
4 x 3 : 5 = 2,4 hay 12/5
- Cuối cùng, bạn cộng cạnh thứ tư với 3 cạnh kia là được <33
Chúc bạn học tốt <33
Tổng độ dài 3 cạnh là: \(\frac{2}{5}+1+\frac{13}{5}=\frac{20}{5}=4\)(m)
=> Cạnh thứ tư có độ dài là: 4.3/5=\(\frac{12}{5}\)
=> Chu vi tứ giác đó là: 4+\(\frac{12}{5}\)=\(\frac{32}{5}\)(m)
ĐS: \(\frac{32}{5}\)(m)
\(m=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(\left(a+b\right)^2-c^2\right)\left(c^2-\left(a-b\right)^2\right)\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
Vì a, b, c là 3 cạnh của tam giác nên tổng của 2 cạnh luôn lớn hơn 1 cạnh và 3 cạnh đều dương
Nên \(\Rightarrow m>0\)
M=4a2b2-(a2+b2-c2)2
=(2ab)2-(a2+b2-c2)2
=(2ab-a2-b2+c2)(2ab+a2+b2-c2)
=(c2-a2+2ab-b2)(a2+2ab+b2-c2)
=[c2-(a2-2ab+b2)][(a2+2ab+b2)-c2]
=[c2-(a-b)2][(a+b)2-c2]
=(c-a+b)(c+a-b)(a+b-c)(a+b+c)
Lời giải:
Áp dụng bất đẳng thức Schur cho $a,b,c$ là ba cạnh của tam giác:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(2-2b)(1-2c)\)
\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\)
Do đó: \(A=a^2+b^2+c^2+4abc\geq a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}-\frac{4}{9}\)
Ta có:
\(a^2+b^2+c^2+2(ab+bc+ac)=(a+b+c)^2=1\)
Áp dụng BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{-2(ab+bc+ac)}{9}\geq \frac{-2}{27}\)
Cộng theo vế: \(a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}\geq \frac{29}{27}\Rightarrow A\geq \frac{29}{27}-\frac{4}{9}=\frac{13}{27}\)
Do đó ta có đpcm
Dấu $=$ xảy ra khi $3a=3b=3c=1$ hay tam giác $ABC$ là tam giác đều.
do (a-b)2\(\ge\)0 ;(b-c)2\(\ge\)0
\(\Rightarrow\)(a-b)2+(b-c)2\(\ge\)0
mà (a-b)2+(b-c)2=0 (đề bài cho)
\(\Rightarrow\)(a-b)2=0;(b-c)2=0
\(\Rightarrow\)a-b=b-c=0
\(\Rightarrow\)a=b=c
Vậy tam giác ABC đều
Từ a3 + b3 + c3 = 3abc
<=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2) - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(loại\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
=> tam giác đó là tam giác đều
b) Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
CM đúng (tự cm tđ)
Ta có: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}=9\)(vì x + y + z = 1)
Dấu "=" xảy ra <=> x = y = z = 1/3
a) Vì a, b, c là độ dài ba cạnh của một tam giác => a, b, c > 0
Ta có : a3 + b3 + c3 = 3abc
<=> a3 + b3 + c3 - 3abc = 0
<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0
<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
Dễ thấy không thể xảy ra trường hợp a + b + c = 0 vì a, b, c > 0
Xét TH còn lại ta có :
a2 + b2 + c2 - ab - ac - bc = 0
<=> 2(a2 + b2 + c2 - ab - ac - bc) = 2.0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ac + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
=> Tam giác đó là tam giác đều ( đpcm )