Cho tam giác ABC có AB = AC và AC > BC. Gọi H là trung điểm cạnh BC.
a) Chứng minh ∆ABH = ∆ACH.
b) Trên tia đối của tia HA lấy điểm M sao cho HA = HM. Chứng minh AB//MC.
c) Từ B vẽ đường thẳng vuông góc với AC tại K, trên tia đối của tia KC lấy điểm D sao cho KD = KC.
Chứng minh tia BK là tia phân giác của góc DBC.
d) Trên tia đối của tia BA lấy điểm E sao cho BE = AD. Chứng minh CE = CA.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
ma AH là đường trung tuyến
nên AH là đường phân giác
b: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: AB//MC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác
b: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: AB//MC
c: Ta có: ΔBCD cân tại B
mà BK là đường cao
nên BK là đường phân giác
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
b: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: AB//MC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Xét tứ giác AHCD có
M là trung điểm của AC
M là trung điểm của HD
Do đó: AHCD là hình bình hành
Suy ra: AD//HC
hay AD//BC
a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
HB chung
HA=HD
Do đó: ΔAHB=ΔDHB
a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
HB chung
HA=HD
Do đó: ΔAHB=ΔDHB
HT
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng