Một khối học sinh khi xếp hàng 6 ,hàng 8,hàng 9 thì đều thừa 3 người nhưng khi xếp hàng 7 thì vừa đủ.Tính số học sinh của khối đó ,biết rằng số học sinh chưa đến 200 người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh đó là a (học sinh)
Ta có:
a:2;3;4;5;6 dư 1
=> (a-1) chia hết cho 2;3;4;5;6
=> a-1 thuộc BC(2;3;4;5;6)
Mà: BCNN là: 60
=> a-1 thuộc Ư(60)={0;60;120;180;240;300;360;420...}
=> a thuộc {1;61;121;181;241;301;361;421...}
Mà: a chia hết cho 7
=> a=301
Vậy số học sinh đó là 3012 học sinh.
CHO TUI XIN VÀI K NHÉ CÁC BẠN ƠI !
Gọi số học sinh phải tìm là a ( 0<a<300 ) và a chia hết cho 7.
Khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên a+1 chia hết cho cả 2,3,4,5,6.
a+1 ∈ BC (2,3,4,5,6)
BCNN(2,3,4,5,6) = 60
BC(2,3,4,5,6) = {0;60;120;180;240;300;360;...}
\Rightarrow a+1 ∈ {0;60;120;180;240;300;360;...}
Vì 0<a<300 \Rightarrow 1<a+1<301 và a chia hết 7.
nên a+1 = 120 \Rightarrow a = 119
Vậy số học sinh là 119 h/s
Gọi số học sinh là : a ( a \(\in\)N * )
Theo bài học sinh khối đó khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thì đều thừa 1 người
=> a - 1 chia hết cho 2, 3 , 4 , 5 , 6
=> a - 1 \(\in\)BC ( 2,3,4,5,6 )
Mà BCNN ( 2,3,4,5,6 ) = 60
=> BC ( 2,3,4,5,6 ) = B ( 60 ) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; ...}
=> a - 1 = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; ...}
=> a = { 1 ; 61 ; 121 ; 181 ; 241 ; 301 ; ...}
Mà số học sinh khi xếp 7 hàng thì vừa đủ và chưa đến 300
hay a chia hết cho 7 và a < 300
=> a =
Gọi số học sinh khối 6 của trường đó là x (học sinh) (x ∈ N*)
Theo đề bài khi xếp hàng 4, hàng 5, hàng 6 đều thiếu 1 học sinh nên x + 1 chia hết cho 4, 5, 6. Mặt khác xếp hàng 7 thì vừa đủ nên x ⋮ 7. Mà số học sinh chưa đến 200 học sinh nên x < 200.
BCNN ( 4, 5, 6 ) = 60
BC ( 4, 5, 6 ) = B ( 60 ) = { 0; 60; 120; 180; 240; … }
Từ đó x + 1 ∈ { 60; 120; 180; 240; … }
Do đó x ∈ { 59; 119; 179; 239; … }
Mà x < 200. Nên x = 119 hoặc x = 179
Ta có 119 = 17 . 7 ; 179 không chia hết cho 7
Vậy x = 119 thích hợp
Số học sinh khối 6 của trường đó là 119 học sinh
Gọi số học sinh khối 6 của trường đó là x (học sinh) (x ∈ N*)
Theo đề bài khi xếp hàng 4, hàng 5, hàng 6 đều thiếu 1 học sinh nên x + 1 chia hết cho 4, 5, 6. Mặt khác xếp hàng 7 thì vừa đủ nên x ⋮ 7. Mà số học sinh chưa đến 200 học sinh nên x < 200.
BCNN ( 4, 5, 6 ) = 60
BC ( 4, 5, 6 ) = B ( 60 ) = { 0; 60; 120; 180; 240; … }
Từ đó x + 1 ∈ { 60; 120; 180; 240; … }
Do đó x ∈ { 59; 119; 179; 239; … }
Mà x < 200. Nên x = 119 hoặc x = 179
Ta có 119 = 17 . 7 ; 179 không chia hết cho 7
Vậy x = 119 thích hợp
Số học sinh khối 6 của trường đó là 119 học sinh.
Câu hỏi của Lê vũ minh uyên - Toán lớp 6 - Học toán với OnlineMath
Gọi số học sinh là x
Theo đề, ta có; \(\left\{{}\begin{matrix}x+1\in BC\left(2;3;4;5;6\right)\\x\in B\left(7\right)\\x< =300\end{matrix}\right.\Leftrightarrow x=119\)
Gọi số học sinh khối 6 của trường đó là x (x ∈ N*; x < 300).
Theo đề bài ta có: x + 1 ⋮ 2 , x + 1 ⋮ 3 , x + 1 ⋮ 4 , x + 1 ⋮ 5; x ⋮ 7
Do đó: x + 1 là BC ( 2 ; 3 ; 4 ; 5 )
BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
BC ( 2 ; 3 ; 4 ; 5 ) = B (60) = { 0; 60; 120; 180; 240; 300; 360; … }
⇒ x + 1 ∈ { 60; 120; 180; 240; 300; 360; … }
Vì x ∈ N* nên x ∈ { 59; 119; 179; 239; 299; 359; … }
Vì x < 300 nên x ∈ { 59; 119; 179; 239; 299 }
Mà x ⋮ 7 nên x = 119.
Vậy số học sinh khối 6 của trường đó là 119 học sinh.
mấy con bạn học khá lớp mik ko hỏi bài này đâu,bài này dễ mà,bạn xem lại kiến thức và tài liệu xem
Chắc chắn bạn sẽ làm được, cố lên nào (^-^)
G. Gọi số học sinh cần tìm là a. ( a khác 0 )
Theo bài ra, ta có : a : 6,8,9 ( dư 3 )
=> a - 3 chia hết 6,8,9 => a - 3 thuộc BC(6,8,9).
a chia hết cho 7.
Ta có:
6 = 2.3
8 = 23
9 = 32
=> BCNN(6,8,9) = 23.32 = 72
a - 3 thuộc BC(6,8,9) = B(72) = {72; 144; 216; ...}
=> a ={75; 147; 219;...}
Mà a < 200 và a chia hết cho 7.
=> a = 147
Vậy số học sinh của khối đó là 147 em.
#Hoktot