1 Tính
80 - [ 130 - ( 12 - 4 ) 2
2. Tìm x
2x . 22 = 32
( x + 1 )3 = 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{93}{17}\): \(x\) + (- \(\dfrac{21}{17}\)) : \(x\) + \(\dfrac{22}{7}\): \(\dfrac{22}{3}\) = \(\dfrac{5}{14}\)
\(\dfrac{94}{17}\) \(\times\) \(\dfrac{1}{x}\) - \(\dfrac{21}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17x}\) = \(\dfrac{5}{14}\) - \(\dfrac{3}{7}\)
\(\dfrac{72}{17x}\) = - \(\dfrac{1}{14}\)
17\(x\) = 72.(-14)
17\(x\) = - 1008
\(x\) = - 1008 : 17
\(x\) = - \(\dfrac{1008}{17}\)
Vậy \(x\) \(=-\dfrac{1008}{17}\)
b; - \(\dfrac{32}{27}\) - (3\(x\) - \(\dfrac{7}{9}\))3 = - \(\dfrac{24}{27}\)
- \(\dfrac{32}{27}\) + \(\dfrac{24}{27}\) = (3\(x\) - \(\dfrac{7}{9}\))3
(3\(x-\dfrac{7}{9}\))3 = - \(\dfrac{8}{27}\)
(3\(x-\dfrac{7}{9}\))3 = (- \(\dfrac{2}{3}\))3
3\(x-\dfrac{7}{9}\) = - \(\dfrac{2}{3}\)
3\(x\) = - \(\dfrac{2}{3}\) + \(\dfrac{7}{9}\)
3\(x\) = \(\dfrac{1}{9}\)
\(x\) = \(\dfrac{1}{9}\) : 3
\(x\) = \(\dfrac{1}{27}\)
Vậy \(x=\dfrac{1}{27}\)
a: \(13\cdot65+35\cdot12\)
\(=13\cdot65+35\cdot13-35\)
=1300-35
=1265
1).( 27,56 x 35 ) + ( 27,56 x 67 ) - ( 27,56 x 2)
= (964 + 1846,52) - 55,12
=2810,52 - 55,12
= 2755,4
2).( 4x 35 ) x ( 25 x 5 ) x 2
= ( 140 x 125 ) x2
= 17500 x 2
=35000
4). 3/10
5). 1188
6). 61/6
a) 36:32+23.22=9/8+506=(9+506.8)/8=(9+4048)/8=4057/8
b) 3.52-16:22=156-8/11=(156.11-8)/11=(1716-8)/11=1708/11
c) 80-[130-(12-4)2]=80-[130-8.2]=80-[130-16]=80-114=-34
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
Bài 2:
a: =>x-1=1 hoặc x-1=-1
=>x=2 hoặc x=0
b: =>x+1=-1
hay x=-2
c: =>(135-7x):9=8
=>135-7x=72
=>7x=63
hay x=9
d: =>(x+7)(x-3)<0
=>-7<x<3
e: \(\Leftrightarrow3^{x-3}=18+9=27\)
=>x-3=3
hay x=6
f: =>4-2x=0
hay x=2
1/ tự tính
2/ a. 2x . 22 = 32
=> 2x = 25 : 22
=> 2x = 23
=> x = 3
b. (x + 1)3 = 27
=> (x + 1)3 = 33
=> x + 1 = 3
=> x = 2