K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Bn tự vẽ hình nha

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)

Tớ chỉ lm đc câu a thui nếu đúng like cho tớ nhabucminh

 

4 tháng 2 2021

bạn ko biết giải phần b,c à

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).a. Chứng minh tứ giác AKMH là hình chữ nhật.b. Chứng minh tứ giác BHKM là hình bình hành.c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm)....
Đọc tiếp

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).

a. Chứng minh tứ giác AKMH là hình chữ nhật.

b. Chứng minh tứ giác BHKM là hình bình hành.

c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.

d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm). Tính độ dài EF.

4. Cho tam giác ABC vuông tại A , đường cao AH . Gọi D là điểm đối xứng với H qua AB,Elà điểm đối xứng với H qua AC . Gọi I là giao điểm của AB và DH, K là giao điểm của AC và EH .

a. Tứ giác AIHK là hình gì? Vì sao?

b. Chứng minh ba điểm D,E,A thẳng hàng.

c. Gọi M là trung điểm của BC. Chứng minh AM vuông góc IK. 

1
11 tháng 12 2021

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

16 tháng 12 2023

a: Xét tứ giác AHMK có

\(\widehat{AHM}=\widehat{AKM}=\widehat{HAK}=90^0\)

=>AHMK là hình chữ nhật

=>AM=HK

b: Xét ΔABC có

M là trung điểm của BC

MK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MH//AC

Do đó: H là trung điểm của AB

Xét ΔABC có

M,K lần lượt là trung điểm của CB,CA

=>MK là đường trung bình của ΔABC

=>MK//AB và \(MK=\dfrac{AB}{2}\)

Ta có: MK//AB

H\(\in\)AB

Do đó: MK//HB

Ta có: \(MK=\dfrac{AB}{2}\)

\(AH=HB=\dfrac{AB}{2}\)

Do đó: MK=AH=HB

Xét tứ giác BHKM có

BH//KM

BH=KM

Do đó: BHKM là hình bình hành

c: Gọi O là giao điểm của AM và KH

Ta có: AHMK là hình chữ nhật

=>AM cắt KH tại trung điểm của mỗi đường

=>O là trung điểm của AM và KH

=>\(OA=OM=\dfrac{AM}{2};OK=OH=\dfrac{KH}{2}\)

mà AM=KH

nên OA=OM=OK=OH(1)

Xét ΔAKM có

AF,KO là các đường trung tuyến

AF cắt KO tại D

Do đó: D là trọng tâm của ΔAKM

Xét ΔAKM có

D là trọng tâm

KO là đường trung tuyến

Do đó: \(KD=\dfrac{2}{3}KO\left(2\right)\)

Xét ΔHAM có

AE,HO là các đường trung tuyến

AE cắt HO tại I

Do đó: I là trọng tâm của ΔHAM

Xét ΔHAM có

HO là đường trung tuyến

I là trọng tâm

Do đó: \(HI=\dfrac{2}{3}HO\left(3\right)\)

Từ (1),(2),(3) suy ra HI=KD

loading...

17 tháng 11 2021

câu a mình làm xong rồi nha

17 tháng 11 2021

b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)

Vậy t.giác ABC cân tại A để ABEC là hình thoi

HBH ABEC là hình chữ nhật

<=> A=90 độ (dhnb)

Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật

bài 7. cho tam giác abc vuông tại a . gọi m là trung điểm của bc . từ m kẻ mh vuông góc ab (h thuộc ab) mk vuông góc ac (k thuộc ac)a) chứng minh tứ giác bhkm là hình bình hành.b) chứng minh tứ giác hmck là hình bình hành.c) chứng minh h là trung điểm của ab .d) chứng minh bc=2hkBài 8. Cho hình bình hành ABCD, có 2 đường chéo AC, BD cắt nhau tại O. Đường thẳng bất kì qua O cắt AB, CD lần lượt ở M và N.a) Chứng minh OM =ONb) Tứ giác...
Đọc tiếp

bài 7. cho tam giác abc vuông tại a . gọi m là trung điểm của bc . từ m kẻ mh vuông góc ab (h thuộc ab) mk vuông góc ac (k thuộc ac)
a) chứng minh tứ giác bhkm là hình bình hành.
b) chứng minh tứ giác hmck là hình bình hành.
c) chứng minh h là trung điểm của ab .
d) chứng minh bc=2hk
Bài 8. Cho hình bình hành ABCD, có 2 đường chéo AC, BD cắt nhau tại O. Đường thẳng bất kì qua O cắt AB, CD lần lượt ở M và N.
a) Chứng minh OM =ON
b) Tứ giác AMCN là hình gì? Vì sao?
c) Chứng minh BN // DM và BN = DM 
Bài 9. Cho hình bình hành ABCD . Trên đường chéo BD lấy hai điểm M và N sao cho: BN=DN=1/3BD
a) Chứng minh :tam giác AMB=tam giác CND 
b)Chứng minh rằng tứ giác AMCN là hình bình hành.
c) Gọi O là giao điểm của AC và BD , I là giao điểm của AM và BC . Chứng minh rằng: AM=2MI
d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O .

1
17 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  

a: Xét ΔABC có 

M là trung điểm của BC

E là trung điểm của AC

Do đó: ME là đường trung bình

=>ME//AB và ME=AB/2

hay ME//AH và ME=AH

Xét tứ giác AEMB có ME//AB

nên AEMB là hình thang

mà \(\widehat{EAB}=90^0\)

nên AEMB là hình thang vuông

b: Xét tứ giác MHAE có 

ME//AH

ME=AH

Do đó: MHAE là hình bình hành

mà \(\widehat{HAE}=90^0\)

nên MHAE là hình chữ nhật

c: Xét tứ giác BHEM có 

ME//BH

ME=BH

Do đó: BHEM là hình bình hành

d: Xét tứ giác BFAM có

H là trung điểm của AB

H là trung điểm của MF

Do đó: BFAM là hình bình hành

mà MA=MB

nên BFAM là hình thoi

27 tháng 11 2015

Bài 1:

a) Xét t, giác ABEC có
M-tđ BC(AM- trung tuyến)

M-tđ AE(E đx A qua M)

BC cắt AE tại M

=> ABEC là hình bình hành (dhnb)

b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)

Vậy t.giác ABC cân tại A để ABEC là hình thoi

HBH ABEC là hình chữ nhật

<=> A=90 độ (dhnb)

Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật

Bài 2:

Xét t.giác AKMH có

A=90*

H=90*(MHvg góc AC)

K=90*(MK vg góc AB)

=> AKMH là hình chữ nhật(dhnb)

b) AM là trung tuyến ứng vs cạnh huyền

=> AM=MC

=> tam giác AMC cân tại M

MH là đg cao

=> MH là trung tuyến

=> H - tđ AC

Xét t,giác AMCP có

H- tđ Ac(  cmt)

H - tđ MP ( P đx M qua H)

AC cắt MP tại H

=> AMCP là hình bình hành (dhnb)

lại có AM=MC( cmt)

=> AMCP là hình thoi ( dhnb)

Bài 3:

Xét tam giác ABC vg tại A có

AB2 + AC2 = BC2

TS: 52 + 122= BC2

BC2= 25+144

=> BC= 13

Am là trung tuyến

=> AM=1/2BC

=> AM =7,5