K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

a) Để chứng minh tứ giác AEDF là hình chữ nhật, ta cần chứng minh các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AD là đường cao của tam giác ABC, nên AEDF là hình chữ nhật nếu và chỉ nếu AE = DF.

- AE là hình chiếu của D lên AB, nên AE = DD' (với D' là hình chiếu của D lên AB).

- DF là hình chiếu của D lên AC, nên DF = DD'' (với D'' là hình chiếu của D lên AC).

 

Vậy để chứng minh AEDF là hình chữ nhật, ta cần chứng minh DD' = DD''. 

 

Ta có tam giác DDD' và tam giác DDD'' là hai tam giác vuông có cạnh chung DD'. Vì vậy, ta có:

- DD' = DD'' (cạnh huyền của hai tam giác vuông bằng nhau)

- Góc DDD' = Góc DDD'' = 90 độ (góc vuông)

 

Vậy tam giác DDD' và tam giác DDD'' là hai tam giác vuông cân có cạnh chung DD'. Do đó, ta có DD' = DD''.

 

Vậy AE = DF, tứ giác AEDF là hình chữ nhật.

 

b) Gọi I là trung điểm của EF. Ta cần chứng minh A, I, D thẳng hàng.

 

Vì I là trung điểm của EF, nên AI là đường trung bình của tam giác AEF. Do đó, ta có AI song song với đường cao DD' của tam giác ABC.

 

Vì AEDF là hình chữ nhật, nên AE song song với DF. Khi đó, ta có AI song song với EF.

 

Vậy ta có AI song song với cả DD' và EF. Do đó, A, I, D thẳng hàng.

 

Vậy ta đã chứng minh được A, I, D thẳng hàng.

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔABC có 

D là trung điểm của BC

DE//AC

Do đó: E là trung điểm của AB

Xét tứ giác AIBD có 

E là trung điểm của AB

E là trung điểm của ID

Do đó: AIBD là hình bình hành

mà AB\(\perp\)DI

nên AIBD là hình thoi

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

3 tháng 11 2021

undefined

12 tháng 12 2021

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

12 tháng 10 2023

a) Xét tứ giác ADHE có:

\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{HDA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)

=> ADHE là h.c.n

b) Ta có:

\(\left\{{}\begin{matrix}\widehat{BID}=2\widehat{IHD}\\\widehat{IKE}=2\widehat{KCE}\end{matrix}\right.\)

mà \(\widehat{IHD}=\widehat{KCE}\)

=> \(\widehat{BID}=\widehat{IKE}\) mà 2 góc có vị trí đồng vị

=> DI//EK

=> DEKI là hình thang

9 tháng 2 2022

a. Xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CF=BF\\BD=AD\end{matrix}\right.\)\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)DF//AC hay DF//EC(1)

Lại có, xét \(\Delta ABC\)\(\left\{{}\begin{matrix}CE=AE\\BD=AD\end{matrix}\right.\)\(\Rightarrow\) ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) ED//BC hay ED//CF(2)

Từ (1) và (2) suy ra tứ giác FDEC là hình bình hành

b. Ta có: \(\left\{{}\begin{matrix}FD//AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow FD\perp AB\Rightarrow\widehat{FDA}=90^o\)

Tương tự xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CE=AE\\CF=BF\end{matrix}\right.\)\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\) EF//AB

Có: \(\left\{{}\begin{matrix}EF//AB\\AC\perp AB\end{matrix}\right.\)\(\Rightarrow EF\perp AC\Rightarrow\widehat{FEA}=90^o\)

Xét tứ giác EFDA có: \(\widehat{FEA}=\widehat{EFD}=\widehat{EAD}=90^o\)

\(\Rightarrow\) Tứ giác EFDA là hình chữ nhật \(\Rightarrow\) AF=DE

c. Xét \(\Delta AKC\) vuông tại K có KE là đường trung tuyến ứng với cạnh huyền

\(\Rightarrow EK=\dfrac{AC}{2}=CE=EA\)

Mà EA=DF (EDFA là hình chữ nhật)

\(\Rightarrow EK=DF\)

Xét tứ giác KDEF có: \(\left\{{}\begin{matrix}DK//EF\\DF=EK\end{matrix}\right.\)\(\Rightarrow\) Tứ giác KDEF là hình thang cân

26 tháng 10 2023

A B C M E F I D

a/

\(ME\perp AB\) (gt)

\(AC\perp AB\Rightarrow AF\perp AB\)

=> ME//AF

\(AB\perp AC\Rightarrow AE\perp AC\)

=> MF//AE

=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\)

=> AEMF là HCN (hbh có 1 góc vuông là HCN)

b/

Ta có

MF

Xét tg vuông ABC có

MB=MC (gt); MF//AE => MF//AB 

=> AF=BF (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MF=IF (gt)

=> AMCI là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có 

\(MF\perp AC\Rightarrow MI\perp AC\)

=> AMCI là hình thoi (hbh có 2 đường chéo vuông góc là hình thoi)

c/

Ta có

AI//CM (cạnh đối hình thoi) => AI//BC => ABCI là hình thang

Xét tứ giác ABMI có

AI//BC (cmt) => AI//BM

MF//AB (cmt) => MI//AB

=> ABMI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Để ABCI là hình thang cân => AB=CI (1)

Ta có

AB=MI (cạnh đối hình bình hành ABMI) (2)

AM=CI (cạnh đối hình thoi AMCI) (3)

Từ (1) (2) (3) => AB=AM=MI=CI

Xét tg vuông ABC có

BM=CM \(\Rightarrow AM=BM=CM=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> AB=AM=BM => tg ABM là tg đều \(\Rightarrow\widehat{B}=60^o\)

Để ABCI là hình thang cân thì tg vuông ABC có \(\widehat{B}=60^o\)

d/

Xét tứ giác ADBM có

DE=ME (gt)

AE=BE (gt)

=> ADBM là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AD//BM (cạnh đối hbh) => AD//BC

Ta có

AI//CM (cạnh đối hình thoi AMCI)

=> A;D;I thẳng hàng (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

Ta có

AD=BM (cạnh đối hbh ADBM)

AI=CM (cạnh đối hình thoi AMCI)

BM=CM (gt)

=> AD=AI => A là trung điểm DI

 

 

 

29 tháng 11 2023

Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.

 

a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.

 

b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:

 

- AD = DC (vì D là trung điểm của BC)

- AE = EB (vì E là trung điểm của AB)

- AF = FC (vì F là trung điểm của AC)

 

Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.

 

c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.

 

- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.

- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.

 

Do đó, ta có AM = AN.

 

- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)

- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)

 

Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.

 

Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.

 

Vậy ta đã chứng minh được M đối xứng với N qua A.