tìm n n^2 +5 chia hết cho n+1giúp em
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-2;2;-4\right\}\)
\(\left(n-4\right)⋮\left(n-1\right)\Rightarrow\left(n-1-3\right)⋮\left(n-1\right)\)
\(Mà\left(n-1\right)⋮\left(n-1\right)\Rightarrow-3⋮\left(n-1\right)\Rightarrow n-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\Rightarrow n\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow n+1\in\left\{1;3\right\}\)
hay \(n\in\left\{0;2\right\}\)
tìm số nguyên n sao cho n +5 chia hết cho n-2. 3
tìm số nguyên n sao cho 2n +1 chia hết cho n -5 6
Bài 1:
a) n thuộc N
b) để 4n + 5 chia hết cho 5
=> 4n chia hết cho 5
=> n chia hết cho 5
=> n thuộc bội dương của 5
c) để 38 - 3n chia hết cho n
=> 38 chia hết cho n
=> n thuộc Ư(38) = {1;-1;2;-2;19;-19;38;-38)
...
xog bn xét gtri nha!
d) để n + 5 chia hết cho n + 1
=> n + 1 + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=>...
e) để 3n + 4 chia hết cho n -1
=> 3n - 3 + 7 chia hết cho n - 1
3.(n-1) +7 chia hết cho n - 1
...
Bài 2:
a) để 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
3.(n-1) + 5 chia hết cho n - 1
...
b) n^2 + 2n + 7 chia hết cho n + 2
n.(n+2) + 7 chia hết cho n + 2
=> 7 chia hết cho n + 2
=>...
c) n^2 + 1 chia hết cho n - 1
=> n^2 - n + n - 1 + 2 chia hết cho n - 1
=> (n+1).(n-1) + 2 chia hết cho n -1
=> 2 chia hết cho n - 1
d) n + 3 + 5 chia hết cho n + 3
e) n -1 + 7 chia hết cho n - 1
f) 4n - 2 + 7 chia hết cho 2n - 1
...
a, n+5 chia hết cho n+2
n+2 chia hết cho n+2
=> (n+5) - (n+2) chia hết cho 2
n+5-n-2 chia hết cho 2
3 chia hết cho 2
=>2 thuộc Ư(3)=...
b, 2n+1 chia hết cho n+5
n+5 chia hết cho n+5 => 2(n+5) chia hết cho n+5
Làm tương tự ý a
c, n2+3n+13 = n (n+3) +13
Mà n(n+3) chia hết cho n+3
=> 13 chia hết cho n+3
=> n+3 thuộc Ư(13)
=>...
a) n+5 chia hết cho n-1
Ta có: n+5 = (n-1)+6
=> n-1 và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}
=> n\(\in\){0;2;-1;3;-2;4;-5;7}
b) n+5 chia hết cho n+2
Ta có: n+5 = (n+2)+3
=> n+2 và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}
=> n\(\in\){-3;-1;-5;1;}
c) 2n-4 chia hết cho n+2
Ta có: 2n-4 = 2(n+2)-8
=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}
=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}
d) 6n+4 chia hết cho 2n+1
Ta có: 6n+4 = 3(2n+1)+1
=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}
=> n\(\in\){-1;0}
e) 3-2n chia hết cho n+1
Ta có: 3-2n= -2(1+n)+5
=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}
=> n\(\in\){-2;0;-6;4;}
\(2x+1⋮x-1\)
=>\(2x-2+3⋮x-1\)
=>\(3⋮x-1\)
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
2x+1⋮x−12x+1⋮x-1
⇔(2x−2)+3⋮x−1⇔(2x-2)+3⋮x-1
⇔2(x−1)+3⋮x−1⇔2(x-1)+3⋮x-1
Mà x−1⋮x−1x-1⋮x-1
⇒2(x−1)⋮x−1⇒2(x-1)⋮x-1
⇒3⋮x−1⇒3⋮x-1
⇔x−1∈Ư(3)={±1;±3}⇔x-1∈Ư(3)={±1;±3}
⇔x∈{0;2;4;−2}⇔x ∈{0;2;4;-2}
Vậy x∈{0;±2;4}x ∈{0;±2;4} thì 2x+1⋮x−1
\(n^2+5⋮n+1\Leftrightarrow n^2-1+6⋮n+1\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)+6⋮n+1\)
\(\Leftrightarrow6⋮n+1\) ( vì \(\left(n-1\right)\left(n+1\right)⋮n+1\) )
\(\Leftrightarrow n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Đến đây bn lập bảng rồi xét để tìm n