\(\left{\begin{m_1=\frac{F}{a_1}}\\{m_1=\frac{F}{a_2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định luật II Niu tơn ta có:
\(a=\dfrac{F}{m}\)
Suy ra:
\(a_1=\dfrac{F}{m_1}\)
\(a_2=\dfrac{F}{m_2}\)
Ta cần tìm:
\(a_3=\dfrac{F}{m_3}=\dfrac{F}{m_1+m_2}\)
\(\Rightarrow \dfrac{1}{a_3}=\dfrac{m_1+m_2}{F}=\dfrac{m_1}{F}+\dfrac{m_2}{F}\)
\(\Rightarrow \dfrac{1}{a_3}=\dfrac{1}{a_1}+\dfrac{1}{a_2}\)
\(\Rightarrow a_3=\dfrac{a_1.a_2}{a_1+a_2}=\dfrac{2.3}{2+3}=1,2(m/s^2)\)
Bạn tham khảo tại đây nhé: Câu hỏi của Vương Hàn.
Chúc bạn học tốt!
Chả biết đúng hay sai! Cứ làm vậy
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
\(=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+..+a_n+a_1}=1\Rightarrow a_1=a_2=...=a_n\) (theo t/c tỉ dãy số bằng nhau)
Do đó:
a) \(\frac{a_1^2+a_2^2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}=\frac{na_1^2}{\left(na_1\right)^2}=\frac{na_1^2}{n^2a_1^2}=\frac{1}{n}\)
b) \(\frac{a_1^7+a_2^7+...+a_n^7}{\left(a_1+a_2+...+a_n\right)^7}=\frac{na_1^7}{\left(na_1\right)^7}=\frac{na_1^7}{n^7a_1^7}=\frac{n}{n^7}\)
Bạn gì có nhãn "CTV" gì ấy trả lời đúng không vậy mn? Đang bí bài này...=((