Bài 1: 1+1 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 1/1.2 + 1/2.3 + ... + 1/6.7
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/6 - 1/7
= 1 - 1/7
= 6/7
2) 1/2 + 1/6 + 1/12 + .. + 1/72
= 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9
= 1 - 1/9
= 8/9
3) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2019}\right)\)
= \(\frac{1}{2}.\frac{2}{3}...\frac{2019}{2020}\)
= \(\frac{1.2....2019}{2.3...2020}\)
= \(\frac{1}{2020}\)
4) A = \(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{512}\)
= \(\frac{1}{2^2}+\frac{2}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^9}\)
=> 2A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
Lấy 2A - A = \(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^9}\right)\)
A = \(\frac{1}{2}-\frac{1}{2^9}\)
Bài 3:
= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99
= 1- 1/99
= 98/99
Bài 4:
= 1/2*3 + 1/3*4 + 1/4*5 +...+ 1/10*11
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11
= 1/2 - 1/11= 9/22
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}-1-\frac{1}{2}-...-\frac{1}{1001}\)
\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)
Bài 1: 1/3+1/9+1/27+1/81+1/243+1/729
Đặt:
A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân A với 3 ta có:
\(Ax3=3+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow Ax3-S=3-\frac{1}{243}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{2186}{729}:2\)
\(\Rightarrow A=\frac{1093}{729}\)
khó thế tính mãi mới ra
1+1=2