K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) = \(\frac{3}{4}\div\)\(\left(-\frac{1}{3}+\frac{2}{3}+\frac{1}{2}\right)\)

\(\frac{3}{4}\div\frac{5}{6}\)

\(\frac{9}{10}\)

c) \(\frac{16.2^3}{4}\)

\(=4.8=32\)

25 tháng 9 2021

\(a)\left|-\frac{1}{2}\right|+3^0+\frac{1}{4}+4+2021^0.\)

\(=\frac{1}{2}+1+\frac{1}{4}+4+1\)

\(=\left(\frac{1}{2}+\frac{1}{4}\right)+\left(1+4+1\right)\)

\(=\frac{3}{4}+6=\frac{27}{4}\)

\(b)\frac{3}{4}\div\left(-\frac{1}{3}\right)+\frac{3}{4}\div\frac{2}{3}+\frac{3}{4}\div\frac{1}{2}\)

\(=\frac{3}{4}\div\left(-\frac{1}{3}+\frac{2}{3}+\frac{1}{2}\right)\)

\(=\frac{3}{4}\div\frac{5}{6}=\frac{9}{10}\)

6 tháng 4 2016

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+...+\frac{1}{20}.\frac{20.21}{2}=1+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}=1+\frac{24.19}{2}=229\)

8 tháng 9 2017

a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)

\(=8+3.1+4:\frac{1}{2}\)

\(=8+3+8=19\)

b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)

c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)

\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)

d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)

13 tháng 11 2016

\(D=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right):\left(\frac{2011}{1}+\frac{2010}{2}+...+\frac{1}{2011}\right)\)

\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(\Rightarrow D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(\Rightarrow D\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}\)

\(\Rightarrow D=\frac{1}{2012}\)

25 tháng 4 2018

= [ 60/90 - ( 12/15 + 10/15) ] : 6/5

= ( 2/3 - 22/15 ) x 5/6

= ( 10/15 - 22/15 ) x 5/6

= -12/15 x 5/6

= -60/90

= -2/3

25 tháng 4 2018

( 15/10 x 4/9 - ( 4/5 + 2/3 )) : 6/5

( 15/10 x 4/9 - ( 12/15 + 10/15 )) : 6/5

(30/45 - 66/45 ) : 6/5

-12/15 : 6/5 ( đã rút gọn -36/45 = -12/15 )

-2/3

k mk na <3

15 tháng 2 2020

a) \(2\frac{3}{4}\cdot\left(-0,4\right)-1\frac{3}{5}\cdot2,75+1,2:\frac{4}{11}\)

\(=2\frac{3}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}:\frac{4}{11}\)

\(=\frac{11}{4}\cdot\left(-\frac{2}{5}\right)-1\frac{3}{5}\cdot\frac{11}{4}+\frac{6}{5}\cdot\frac{11}{4}\)

\(=\frac{11}{4}\left(-\frac{2}{5}-1\frac{3}{5}+\frac{6}{5}\right)\)

\(=\frac{11}{4}\left(-\frac{2}{5}-\frac{8}{5}+\frac{6}{5}\right)\)

\(=\frac{11}{4}\cdot\left(-\frac{4}{5}\right)=\frac{11}{1}\cdot\left(-\frac{1}{5}\right)=-\frac{11}{5}\)

b) \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)....\left(\frac{1}{31}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{31}+\frac{31}{31}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{32}{31}\)

\(=\frac{3\cdot4\cdot5\cdot...\cdot32}{2\cdot3\cdot4\cdot...\cdot31}=\frac{32}{2}=16\)

c) Đặt \(C=1+2+3+...+30\)

Số số hạng là : \(\left(30-1\right):1+1=30\)(số)

Tổng của dãy số là : \(\frac{\left(1+30\right)\cdot30}{2}=465\)

Do đó : \(\frac{930}{C}=\frac{930}{465}=2\)