Tìm số tự nhiên a lớn nhất có ba chữ số biết rằng
a :4 dư 3 a :5 dư 4 a:6 dư5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì chia cho 3 dư 2 ; cho 5 dư 4 và 7 dư 6 nên số đó thêm 1 đơn vị sẽ chia hết cho 3 ; 5 và 7
Mà số lớn nhất chia hết cho 3 ; 5 và 7 là 945
Vậy số cần tìm là:
945 − 11 == 944
ĐS: 944
Đáp án:
Số cần tìm là 944.
Giải thích các bước giải:
Số cần tìm chia cho 3 dư 2, chia 5 dư 4, chia 7 dư 6.
Nếu thêm số đó 1 đơn vị thì số mới chia hết cho 3, 5, 7.
Các số có ba chữ số chia hết cho 3, 5, 7 là : 105; 210; 315; ...; 945.
Số lớn nhất có ba chữ số chia hết cho 3, 5, 7 là 945.
Vậy số cần tìm là : 945 - 1 = 944.
Số A là: 3x5x7-1=105-1=104
Vậy Tổng các chữ số là: 1+4+0=5
Chọn A
Giả sử số cần tìm là 999 thì không chia hết cho 5 và 7 nên số cần tìm là 1 số <999
Nếu số cần tìm cộng thêm 1 đơn vị thì được số mới chia hết cho 3; 5; 7 nên ta tìm số lớn nhất có 3 chữ số chia hết cho 3,5,7
Để số mới chia hết đồng thời cho 3;5;7 thì số mới chia hết cho 3x5x7=105
Số mới có dạng nx105 ta thấy n=9 thoả mãn điều kiện được số mới là số lớn nhất có 3 chữ số chia hết đồng thời cho 3,5,7
Số mới là
9x105=945
Số cần tìm là
945-1=944
Gọi số cần tìm là a < a là stn có 3 chữ số lớn nhất có thể >
a chia 3 dư 2 => a - 2 chia hết cho 3 => a - 2 + 3 chia hết cho 3 => a + 1 chia hết cho 3 ( 1 )
a chia 5 dư 4 => a - 4 chia hết cho 5 => a - 4 + 5 chia hết cho 5 => a + 1 chia hết cho 5 ( 2 )
a chia 7 dư 6 => a - 6 chia hết cho 7 => a - 6 + 7 chia hết cho 7 => a + 1 chia hết cho 7 ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) kết hợp thêm giả thiết
=> a + 1 thuộc BC(3, 5, 7) và a + 1 stn có 3 chữ số lớn nhất có thể
BCNN(3, 5, 7) = 3 . 5 . 7 = 105
BC(3, 5, 7) = B(105) = { 0 ; 105 ; 210 ; ... ; 840 ; 945 ; 1050 ; ... }
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
gọi số cần tìm là n (100<n<999)
n-1 chia hết cho 2 => (n-1)+1 chia hết cho 2 => n+1 chia hết cho 2
n-2 chia hết cho 3 => (n-2)+2 chia hết cho 3 => n+1 chia hết cho 3
n-3 chia hết cho 2 => (n-3)+3 chia hết cho 2 => n+1 chia hết cho 4
n-4 chia hết cho 2 => (n-4)+4 chia hết cho 2 => n+1 chia hết cho 5
n-5 chia hết cho 3 => (n-5)+5 chia hết cho 3 => n+1 chia hết cho 6
=> n+1 thuộc BC(2,3,4,5,6)
Ta có
BCNN(2,3,4,5,6)=60
BC(2,3,4,5,6)=B(60)={0,60,120,......,960,1020,....}
100<n<999 => n=960-1=959
Gọi số cần tìm là a < a là stn có 3 chữ số lớn nhất có thể >
a chia 3 dư 2 => a - 2 chia hết cho 3 => a - 2 + 3 chia hết cho 3 => a + 1 chia hết cho 3 ( 1 )
a chia 5 dư 4 => a - 4 chia hết cho 5 => a - 4 + 5 chia hết cho 5 => a + 1 chia hết cho 5 ( 2 )
a chia 7 dư 6 => a - 6 chia hết cho 7 => a - 6 + 7 chia hết cho 7 => a + 1 chia hết cho 7 ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) kết hợp thêm giả thiết
=> a + 1 thuộc BC(3, 5, 7) và a + 1 stn có 3 chữ số lớn nhất có thể
BCNN(3, 5, 7) = 3 . 5 . 7 = 105
BC(3, 5, 7) = B(105) = { 0 ; 105 ; 210 ; ... ; 840 ; 945 ; 1050 ; ... }
Theo giả thiết => a + 1 = 945 <=> a = 944
Vậy số cần tìm là 944
Gọi số cần tìm là a < a là stn có 3 chữ số lớn nhất có thể >
a chia 3 dư 2 => a - 2 chia hết cho 3 => a - 2 + 3 chia hết cho 3 => a + 1 chia hết cho 3 ( 1 )
a chia 5 dư 4 => a - 4 chia hết cho 5 => a - 4 + 5 chia hết cho 5 => a + 1 chia hết cho 5 ( 2 )
a chia 7 dư 6 => a - 6 chia hết cho 7 => a - 6 + 7 chia hết cho 7 => a + 1 chia hết cho 7 ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) kết hợp thêm giả thiết
=> a + 1 thuộc BC(3, 5, 7) và a + 1 stn có 3 chữ số lớn nhất có thể
BCNN(3, 5, 7) = 3 . 5 . 7 = 105
BC(3, 5, 7) = B(105) = { 0 ; 105 ; 210 ; ... ; 840 ; 945 ; 1050 ; ... }
Theo giả thiết => a + 1 = 945 <=> a = 944
Vậy số cần tìm là 944
Vì a:20 dư 5
a:4 dư 1
a:7 dư 6
\(\Rightarrow a+15⋮20,4,7\)
\(\Rightarrow a+15\in BC\left(20;4;7\right)\)
\(20=2^2\cdot5;4=2^2;7=7\)
\(\Rightarrow BCNN\left(20;4;7\right)=2^2\cdot5\cdot7=140\)
\(\Rightarrow BC\left(20;4;7\right)=B\left(140\right)=\left(0;140;280;...\right)\)
\(a+15\in\left(0;140;280;...\right)\)
Mà a là số lớn nhất có 3 chữ số \(\Rightarrow a+15=980\)
\(\Rightarrow a=965\)
Vậy a=965