K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

a: Xét ΔBME vuông tại E và ΔCMF vuông tại F có 

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)

Do đó: ΔBME=ΔCMF

Suy ra: BE=CF

25 tháng 3 2018

19 tháng 1 2022

câu  sai nha bạn người ta bảo điều kiện của tam giác abc chứ ko phải thay canh BE với CE nha

13 tháng 12 2015

\(\Delta BEM=\Delta CFM\text{(cạnh huyền - góc nhọn) }\Rightarrow BE=CF\)

Đề sai rồi bạn

Xét \(\Delta\) vuông BEM và \(\Delta\)vuông CFM ta có :

BM = CM

EMB = CMF ( đối đỉnh )

=> \(\Delta\)BEM = \(\Delta\)CFM ( cạnh huyền - góc nhọn )

=> BE = CF

29 tháng 11 2014

Xét 2 TG vuông BME và CMF, ta có:

BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)

=>TG BME=TG CMF(cạnh huyền-góc nhọn)

=>BE=CF(2 cạnh tương ứng)

20 tháng 11 2017


Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)

5 tháng 2 2021

xét tam giác vuông BEC có EM là đường trung tuyến ứng với cạnh huyền 

suy ra EM = \(\frac{1}{2}\)BC        (1)

xét tam giác vuông CFB có FM là đường trung tuyến ứng với cạnh huyền 

suy ra FM = \(\frac{1}{2}\)BC        (2)

từ (1) và (2) suy ra M là trung điểm EF

mà M là trung điểm của BC

từ 2 điều đó suy ra BECF là hình bình hành 

suy ra BE = CF