K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

CM,CA là các tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM.DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

CD=CM+MD

=>CD=AC+BD

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

b: AC*BD=CM*MD=OM^2=R^2

14 tháng 12 2018

day la mi thuat mak bn, bn sang ben toan mak hr nha

14 tháng 12 2018

vâng

25 tháng 12 2014

trên CD lấy điểm N, kẻ MN vuông góc với CD

=> 2 tam giac vuông MBC=MNC

=> 2tam giác MAD=MND

=> MB=MN=MA = R

vậy CD là tiếp tuyến đường tròn tâm  M

 

3 tháng 1 2021

Trả lời hộ mình cái xin. mình đã 2 năm ko on r giờ mới on lại :(((.Xin mọi người trả lời giúp mình :(((

a: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM và OC là phân giác của \(\widehat{MOA}\)

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

CA=CM

=>C nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OC là đường trung trực của AM

=>OC\(\perp\)AM

b: Xét tứ giác CAOM có \(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\)

nên CAOM là tứ giác nội tiếp

=>C,A,O,M cùng thuộc một đường tròn

c: Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc MOB và DM=DB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

=>ΔCOD vuông tại O

Xét ΔOCD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

mà MC=CA và DM=DB

nên \(CA\cdot DB=OM^2=R^2\)

6 tháng 3 2016

D đâu ra vậy