Chứng minh rằng: n5-n chia hết cho 30 với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có; n5-n=n(n4-1)
=n(n2-1)(n2-4+5)
=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)
=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1)
Vì n(n-1)(n+1) là tích 3 số tự nhiên liên tiếp nên n(n-1)(n+1) chia hết cho 2 và 3 (1) => 5n(n-1)(n+1) chia hết cho 30 (2)
CÓ: n(n-1)(n+1)(n-2)(n+2) là tích 5 số tự nhiên liên tiếp nên n(n-1)(n+1)(n-2)(n+2) chia hết cho 5
Mà n(n-1)(n+1) chia hết cho 2 và 3 => n(n-1)(n+1)(n-2)(n+2) chia hết cho 30 (3)
Từ (1),(2),(3) => n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1) chia hết cho 30 hay n5-n chia hết cho 30 (đpcm)
chia hết cho 3: Tích của ba số tự nhiên liên tiếp
Chia hết cho 5: Tích của 5 số tự nhiên liên tiếp
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên (n-1)n(n+1) chia hết cho 2 và 3
=>(n-1)n(n+1)(n2+1) chia hết cho 2 và 3 <=> n5-n chia hết cho 2 và 3 (*)
Xét 5 trường hợp: n=5k; n=5k+1; n=5k+2; n=5k+3; n=5k+4 bạn sẽ suy ra n5-n luôn chia hết cho 5 nhé
Kết hợp với phần (*) sẽ suy ra nó luôn chia hết cho 30
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15