Cho các số x, y thỏa mãn điều kiện:
2x\(^2\) + 10y\(^2\) – 6xy – 6x – 2y + 10 = 0
Hãy tính giá trị của biểu thức: A = [(x + y – 4)2018 – y2018] : x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(2x^2+10y^2-6xy-6x-2y+10=0\)
\(\Leftrightarrow (x^2+9y^2-6xy)+(x^2-6x+9)+(y^2-2y+1)=0\)
\(\Leftrightarrow (x-3y)^2+(x-3)^2+(y-1)^2=0\)
\(\Rightarrow (x-3y)^2=(x-3)^2=(y-1)^2=0\)
\(\Rightarrow x=3; y=1\)
Câu 2:
Với giá trị $x,y$ tìm được ở bài 1:
\(A=\frac{(x+y-4)^{2018}-y^{2018}}{x}=\frac{(3+1-4)^{2018}-1^{2018}}{3}=\frac{-1}{3}\)
c mình hỏi với là từ dòng thứ 3 bài q có thể suy ra dòng thứ 4 à?
Sửa đề: \(2x^2+10y^2-6xy-2y-6x+10=0\)
\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+\left(y^2-2y+1\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(x-3y\right)^2+\left(y-1\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y\\y=1\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Thay vào \(A\)
\(A=\dfrac{\left(3+1-4\right)^{2018}-1^{2018}}{4}=-\dfrac{1}{4}\)
\(a,2x^3-8x^2+8x\)
\(=2x^3-4x^2-4x^2+8x\)
\(=\left(2x^3-4x^2\right)-\left(4x^2-8x\right)\)
\(=2x\left(x-2\right)-4x\left(x-2\right)\)
\(=\left(2x-4x\right)\left(x-2\right)\)
\(b,2x^2-3x-5=2x^2-5x+2x-5\)
\(=\left(2x^2-5x\right)+\left(2x-5\right)=x\left(2x-5\right)+\left(2x-5\right)\)
\(=\left(x+1\right)\left(2x-5\right)\)
\(c,x^2y-x^3-9y+9x\)
\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(x^2-9\right)\left(y-x\right)\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
\(2x^2+10y^2-6xy-6x-2y+10=0\)
\(\Leftrightarrow x^2-6xy+9y^2+x^2-6x+9+y^2-2y+1=0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left(x-3\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x-3=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy \(A=\dfrac{\left(x+y-4\right)^{2018}-y^{2018}}{x}=\dfrac{0^{2018}-1^{2018}}{3}=-\dfrac{1}{3}\)