tam giac abc vuong tai A goc B=60 ve duong cao AH duong trung tuyen AM ve HE vuong goc AB tai E, HF vuong goc AC tai F
C/m AM vuong goc EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔBEM vuông tại E và ΔCFM vuông tại F có
BM=CM
góc B=góc C
=>ΔBEM=ΔCFM
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ME=MF
=>ΔAEM=ΔAFM
=>AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
=>ΔABD=ΔACD
=>DB=DC
=>D nằm trên trung trực của BC
=>A,M,D thẳng hàng
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
Vì trong 1 tam giác cân, đường cao đồng thời là đường trung tuyến, vừa là đường phân giác của tam giác đó.
\(\Rightarrow\) \(\widehat{EAO}\)\(=\widehat{FAO}\)
Xét \(\Delta EAO\) và \(\Delta FAO\) có:
AO là cạnh chung
\(\widehat{AOE}\)\(=\widehat{AO}F\) ( vì AH\(\perp BC\)\(\Rightarrow\) AH\(\perp\)EF)
\(\widehat{EAO}\)\(=\widehat{FAO}\) (cmt)
\(\Rightarrow\Delta EAO=\Delta FAO\left(g.c.g\right)\)
\(\Rightarrow AE=\) AF( cặp cạnh tương ứng)
Vì \(\widehat{AOE}=\widehat{OHB}\) \(=90\)độ
Mà 2 góc này ở vị trí đồng vị nên EF// BC (1)
Vì \(\Delta ABC\) cân tại A=> \(\widehat{B}\) = \(\widehat{C}\) (2)
Từ (1) và (2)=> BEFC là hình thang cân.
a)
Xét \(\Delta BHE\) và \(\Delta CHF\) có:
\(\widehat{B}=\widehat{C}\left(gt\right)\)
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(HB=HC\)( trong tam giác cân, đường cao cũng là đường trung tuyến)
\(\Rightarrow\Delta BHE=\Delta CHF\left(g.c.g\right)\)
\(\RightarrowĐpcm\)
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>góc AFH=góc AEH=góc B
ΔBAC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>góc MAC=góc C
=>góc MAC+góc B=90 độ
=>AM vuông góc với EF