K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có

K là trung điểm của AB(gt)

I là trung điểm của AC(gt)

Do đó: KI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên KI//BC và \(KI=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Xét tứ giác BKIC có KI//BC(cmt)

nên BKIC là hình thang có hai đáy là KI và BC(Định nghĩa hình thang)

Hình thang BKIC(KI//BC) có \(\widehat{KBC}=\widehat{ICB}\)(hai góc ở đáy của ΔABC cân tại A)

nên BKIC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét ΔABC cân tại A có AM là đường trung tuyến ứng với cạnh đáy BC(gt)

nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)

\(\Leftrightarrow AM\perp BC\)

hay \(\widehat{AMC}=90^0\)

Xét tứ giác AMCN có 

I là trung điểm của đường chéo AC(gt)

I là trung điểm của đường chéo MN(M và N đối xứng nhau qua I)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(cmt)

nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Ta có: AMCN là hình chữ nhật(cmt)

nên AN//MC và AN=MC(Hai cạnh đối trong hình chữ nhật AMCN)

mà B\(\in\)MC và MB=MC(M là trung điểm của BC)

nên AN//BM và AN=BM

Xét tứ giác ANMB có

AN//BM(cmt)

AN=BM(cmt)

Do đó: ANMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo AM và BN cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(1)

Xét ΔABC có 

K là trung điểm của AB(gt)

M là trung điểm của BC(Gt)

Do đó: KM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên KM//AC và \(KM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà I\(\in\)AC và \(AI=\dfrac{AC}{2}\)(I là trung điểm của AC)

nên KM//AI và KM=AI

Xét tứ giác AIMK có

KM//AI(cmt)

KM=AI(cmt)

Do đó: AIMK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo AM và KI cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(2)

Từ (1) và (2) suy ra AM,BN và IK đồng quy(đpcm)

12 tháng 12 2015

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o 
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o 
=> D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=> tam giác DHE vuông tại H. 


c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BAEC là hình thang vuông. 

12 tháng 12 2015

 a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o 
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4) 
Từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=>  tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o 
tương tự ta có góc AEC=90o 
=> BD//CE (cùng vuông góc với DE) 
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BDEC là hình thang vuông. 

12 tháng 12 2021

ABCKHM----

a) Xét tứ giác AHCK ta có:

 Vì O trung điểm AC

K đối xứng vs H qua O => O trung điểm HK

Mà AC và HK cắt nhau tại trung điểm O

=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)

Lại có ^AHC=90( AH là đường cao)

=> AHCK là hcn (hbh có 1 góc vuông)

b) Xét tứ giác ABMC có:

M đối xứng với A qua H => AM là đường trung trực 

=> AB=AC (1)

Mặt khác:M đối xứng vs A qua H=> H trung điểm AM

AH là đường cao của tam giác ABC cân tại A

=> AH là đường trung tuyến của tam giác ABC

=>H là trug điểm BC (HB=HC)

mà AM và BC cắt nhau tại trug điểm H

Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)

Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)

c) Xét tứ giác ABHK có:

Vì HB=HC (cmt)

mà AK=HC ( AKHC là hcn)

=> AK=BH 

Lại có AK//BC (AKHC là hcn)

=>AK//BH 

Nên AKBH là hbh (  2 cạnh đối // và = nhau)

d) VÌ HB=HC=BC/2 (cm câu a)

=> HC=6/2=3 cm

Áp dụng công thức tính S và hcn AKHC ta có:

SAKHC=AH.HC

=> SAKHC=4.3=12 (cm2)

Vậy  SAKHC=12 cm2

a: Xét tứ giác AHBK có 

M là trung điểm của AB

M là trung điểm của HK

Do đó: AHBK là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBK là hình chữ nhật

b:

Xét tứ giác AKHC có 

AK//HC

AK=HC

Do đó: AKHC là hình bình hành

c: Xét ΔABC có

N là trung điểm của AC

H là trung điểm của BC

Do đó: NH là đường trung bình

=>NH//AB và NH=AB/2

hay NH//AM và NH=AM

=>AMHN là hình bình hành

mà AM=AN

nên AMHN là hình thoi

16 tháng 11 2021

a: Xét tứ giác ADCF có 

E là trung điểm của AC

E là trung điểm của DF

Do đó: ADCF là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên ADCF là hình chữ nhật

30 tháng 5 2017

A H B C D E 1 2

a) AB là đường trung trực của HD \(\Rightarrow\) AD = AH.

AC là đường trung trực của HE \(\Rightarrow\) AE = AH.

Suy ra AD = AE. (1)

Tam giác AHD cân nên \(\widehat{HAD}=2\widehat{A_1}.\)

Tam giác AHE cân nên \(\widehat{HAE}=2\widehat{A_2}.\)

Suy ra \(\widehat{HAD}+\widehat{HAE}=2\widehat{A_1}+2\widehat{A_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)\)

\(\widehat{HAD}+\widehat{HAE}=2.90^o=180^o.\)

Do đó D, A, E thẳng hàng. (2)

Từ (1) và (2) suy ra A là trung điểm của DE. Vậy D đối xứng với E qua A.

b) Tam giác DHE có HA là đường trung tuyến và HA = \(\dfrac{1}{2}\) DE nên \(\Delta DHE\) vuông tại H.

c) Hãy chứng minh \(\widehat{ADB}=\widehat{AHB}=90^o,\widehat{AEC}=90^o\) để suy ra BDEC là hình thang vuông

d) Hãy chứng minh BD = BH, CE = CH.

18 tháng 11 2017

bạn giải cụ thể giúp mình câu c với b dc ko bn?

16 tháng 12 2021

1: Xét tứ giác AHCE có 

I là trung điểm của AC

I là trung điểm của HE

Do đó: AHCE là hình bình hành

mà \(\widehat{HAC}=90^0\)

nên AHCE là hình chữ nhật

Suy ra: AC=HE