cho biểu thức P=-(x+5)2-|x-y+1|+2018. Tìm GTLN(P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
Có I x - \(\frac{2}{5}\)I \(\ge\)0 \(\forall x\in R\)
=>- I x-\(\frac{2}{5}\)I \(\le0\forall x\in R\)
=>- I x- \(\frac{2}{5}\)I +2018\(\le\)2018\(\forall x\in R\)
Dấu "=" xaỷ ra
\(\Leftrightarrow\)x-\(\frac{2}{5}\)=0
\(\Leftrightarrow\)x=\(\frac{2}{5}\)
vậy GTLN của bt là 2018 khi và chỉ khi x=\(\frac{2}{5}\)
M = - | x - 2/5 | + 2018
ta thấy | x - 2/5 | >= 0 nhỏ nhất = 0
Suy ra M lớn nhất là bằng 2018 khi và chỉ khi x - 2/5 = 0 <=> x = 2/5
* GTLN
- Ta co: \(x^2+\left(x-2y\right)^2-2\left(x-2y\right)-4x+2018\)
- \(=x^2-4x+4+\left(x-2y\right)^2-2\left(x-2y\right).1+1+2013\)
- \(=\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\)
- Vì \(\left(x-2\right)^2\ge0,\forall x\)
- \(\left(x-2y-1\right)^2\ge0,\forall x\)
- \(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\ge2013\)
\(\Rightarrow\frac{2012}{\left(x-2\right)^2+\left(x-2y-1\right)^2+2013}\le\frac{2012}{2013}\)
\(\Rightarrow G\le\frac{2012}{2013}\)
Vậy Max G= 2012/2013 tại \(\hept{\begin{cases}x-2=0\\x-2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2-2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
\(\sqrt{x+5}-y^3=\sqrt{y+5}-x^3\)
\(\Leftrightarrow\sqrt{x+5}-\sqrt{y+5}+x^3-y^3=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x+5}-\sqrt{y+5}\right)\left(\sqrt{x+5}+\sqrt{y+5}\right)}{\sqrt{x+5}+\sqrt{y+5}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\dfrac{\left(x+5\right)-\left(y+5\right)}{\sqrt{x+5}+\sqrt{y+5}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x+5}+\sqrt{y+5}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+5}+\sqrt{y+5}}+x^2+xy+y^2\right)=0\)
\(\Leftrightarrow x-y=0\) và\(\dfrac{1}{\sqrt{x+5}+\sqrt{y+5}}+x^2+xy+y^2>0\)
\(\Leftrightarrow x=y\)
Khi đó: \(P=x^2-3xy+12-y^2+2018\)
\(\Leftrightarrow P=x^2-3x^2+12-x^2+2018\)
\(\Leftrightarrow P=2030-3x^2\le2030\)
dấu "=" xảy ra khi và chỉ khi x=y=0
vậy maxP=2030 khi và chỉ khi x=y=0
Sử dụng bất đẳng thức:
\(x^3+y^3\ge3xy\left(x+y\right)\)
Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)
\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)
\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)
\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)
Vậy Max M=2018 khi x=y=z=1
\(P=-\left(x+5\right)^2-\left|x-y+1\right|+2018\le2018\)
\("="\Leftrightarrow\hept{\begin{cases}x=-5\\y=-4\end{cases}}\)
Nhan thay: \(\hept{\begin{cases}\left(x-5\right)^2\ge0\\\left|x-y+1\right|\ge0\end{cases}}\)\(\forall x,y\)
=> \(\hept{\begin{cases}-\left(x+5\right)^2\le0\\-\left|x-y+1\right|\le0\end{cases}}\) \(\forall x,y\)
=> \(-\left(x-5\right)^2-\left|x-y+1\right|\le0\)
<=> \(-\left(x-5\right)^2-\left|x-y+1\right|+2018\le2018\)
hay \(P\le2018\)
Dau "=" xra <=> \(\hept{\begin{cases}x-5=0\\x-y+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=5\\y=6\end{cases}}\)
Vay...