Cho tam giác ABC, trung tuyến AM, I thuộc A,M. E là giao điểm của BI và AC, F là giao điểm của CI và AB. CMR EF song song BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do không có dụng cụ đo nên hình vẽ khá xấu,thông cảm
Lấy N đối xứng với I qua M.Khi đó tứ giác IBNC là hình bình hành suy ra NC//BI;BN//CI
Theo Thales ta có:
\(\frac{AI}{IN}=\frac{AE}{AC};\frac{AI}{IN}=\frac{AF}{AB}\)
Khi đó:\(\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow EF//AB\)
a: HM là đường trung bình của ΔEBC
=>EH=HB
KM là đường trug bình của ΔFBC
=>FK=KC
ΔAHM có EO//HM
=>AE/AH=AO/AM
ΔAKM có KM//FO
nên AF/AK=AO/AM
=>AE/AH=AF/AK
=>EF//HK
b: ΔAHM có EO//HM
=>MA/MO=HA/HE
=>MA/MO=HA/HB
ΔAKM có FO//KM
=>MA/MO=KA/KF=KA/KC
=>HA/HB=KA/KC
=>HK//BC
=>EF//BC
a: HM là đường trung bình của ΔEBC
=>EH=HB
KM là đường trug bình của ΔFBC
=>FK=KC
ΔAHM có EO//HM
=>AE/AH=AO/AM
ΔAKM có KM//FO
nên AF/AK=AO/AM
=>AE/AH=AF/AK
=>EF//HK
b: ΔAHM có EO//HM
=>MA/MO=HA/HE
=>MA/MO=HA/HB
ΔAKM có FO//KM
=>MA/MO=KA/KF=KA/KC
=>HA/HB=KA/KC
=>HK//BC
=>EF//BC