K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

Ta có: m2-6m+15 = m2-2.3.m+32+6 = (m-3)2+6

mà (m-3)2 >0 --> (m-3)2+6 >6 nên cũng >0

---> đpcm

12 tháng 12 2018

ta có:m2-6m+15

=m2-2m.3+9-9+15

=(m-3)2+6

=>(m-3)2≥0; 6>0

=>(m-3)2+6>0

vậy : m2-6m+15>0

nếu thấy hay cho 1 like

11 tháng 3 2017

4 tháng 7 2015

\(M=\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)

\(M=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\) mà \(\left(x-\frac{1}{2}\right)^2\)  luôn \(\ge0\)  với mọi \(x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

 

 

9 tháng 9 2018

sorry bn nhé! mik mới hok lớp 6 à

9 tháng 9 2018

\(3x^2-\frac{9}{3}x+3=3\left(x^2-x+\frac{1}{4}\right)+\frac{9}{4}=3\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

12 tháng 4 2018

      \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Vì    \(\left(3x-1\right)^2\ge0\)

\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)

hay    \(9x^2-6x+1>0\)

12 tháng 4 2018

Ta có :

\(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)

Vậy \(9x^2-6x+3>0\forall x\in R\)

9 tháng 6 2015

 a) x2-6x+10>0

<=>x2-6x+9+1>0

<=>(x-3)2+1>0(đúng với mọi x)

vậy x2-6x+10>0 với mọi x

b)x2-2x+y2+4y+6>0 

<=>x2-2x+1y2+4y+4+1>0

<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)

Vậy x2-2x+y2+4y+6>0 với mọi x,y

11 tháng 8 2015

x^2-6x+10

=x^2-6x+9+1

=x^2-6x+3^2+1

=(x-3)^2+1

ta có: (x-3)^2 >hoặc = 0 với mọi x

=>(x-3)^2+1>hoặc =0+1 >0 với mọi x

chắc chắn đúng luôn nhớ li-ke cho minh nha

11 tháng 8 2015

\(x^2-6x+10=x^2-6x+9+1=\left(x+3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\) => \(\left(x-3\right)^2+1>0\)  với mọi x 

=> \(x^2-6x+10>0\)  (ĐPCM)

 

 

21 tháng 5 2018

a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)

\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)

\(\Delta'=b'^2-ac\)

\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)

\(=m^2-2m+1+6m+7\)

\(=m^2+4m+8\)

\(=m^2+2.m.2+2^2+4\)

\(=\left(m+2\right)^2+4>0,\forall m\)

Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m 

15 tháng 7 2016

chứng tỏ rằng: 

4x-x^2-5<0 với mọi x

15 tháng 7 2016

\(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\)