Tìm GTNN của biểu thức : P = \(x+\frac{9}{x-2}+2018\) với x > 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x+\frac{9}{x-2}+2018\)
\(=\left(x-2\right)+\frac{9}{x-2}+2020\)
\(\ge2\sqrt{\frac{\left(x-2\right)9}{x-2}}+2020\)
\(=2\sqrt{9}+2020=2026\)
Dấu = xảy ra khi và chỉ khi \(x=5\)
Vậy \(Min_P=2026\)khi \(x=5\)
\(P=\left(x-2\right)+\frac{9}{x-2}+2020\)
\(P\ge2.\sqrt{\frac{\left(x-2\right).9}{x-2}}+2020\)
=> \(P\ge6+2020=2026\)
"=" xảy ra <=> \(x-2=\frac{9}{x-2}\)
<=> \(\left(x-2\right)^2=9\)
<=> \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
Do \(x>2\) => \(x=5\)
VẬY P MIN = 2026 <=> x = 5.
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
Ta có: \(A=\left(x+y\right).1=\left(x+y\right).\left(\frac{2017}{x}+\frac{2018}{y}\right)=2017+2018.\frac{x}{y}+2017.\frac{y}{x}+2018\)
\(\Leftrightarrow A=4035+2017\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{x}{y}\ge4035+2017.2+\frac{x}{y}\)
\(\Leftrightarrow A\ge8069+\frac{x}{y}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{x}{y}=\frac{y}{x}\Leftrightarrow x^2=y^2\Leftrightarrow x=y=4035\)( thỏa đề bài )
\(\Leftrightarrow minA=8069+1=8070\)
hok chăm vào -,-
\(P=x+\frac{9}{x-2}+2018=x-2+\frac{9}{x-2}+2020\ge2\sqrt{\left(x-2\right).\frac{9}{x-2}}+2020=2026\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x-2=\frac{9}{x-2}\)\(\Leftrightarrow\)\(\left(x-2\right)^2=9\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
...
\(x=-1\) loại nhé