K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

mày chả vào đc

29 tháng 3 2022

-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)

\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)

\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)

\(\Leftrightarrow-2n-4043+2022< 0\)

\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)

-Từ điều trên ta suy ra:

\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.

 

NV
5 tháng 1 2024

Do n lẻ \(\Rightarrow n=2k+1\)

Đặt \(a=7^n+24=7^{2k+1}+24=7.49^k+24\)

Do \(\left\{{}\begin{matrix}49\equiv1\left(mod4\right)\\7\equiv3\left(mod4\right)\\24\equiv0\left(mod4\right)\end{matrix}\right.\) \(\Rightarrow7.49^k+24\equiv3\left(mod4\right)\)

Mà các số chính phương chia 4 chỉ có các số dư 0 hoặc 1

\(\Rightarrow a\) không thể là SCP hay \(7^n+24\) ko là SCP với mọi số tự nhiên lẻ n

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

Xét $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.

Khi đó:

$3^n+4=3^{2k+1}+4\equiv (-1)^{2k+1}+4\equiv -1+4\equiv 3\pmod 4$

Xét $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.

$3^n+4=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$

Vậy $3^n+4$ chia $4$ dư $3$ hoặc chia $8$ dư $5$ với mọi $n$ tự nhiên.

$\Rightarrow 3^n+4$ không thể là số chính phương (do 1 scp chia 8 chỉ có thể có dư 0,1,4 và chia 4 chỉ có dư 0,1).

19 tháng 8 2018

cho n=1 => A=12004+1=1+1=2

vay A=2