Tìm x biết: a)x(x-3)+x-3=0 b)(5x-4)^2-16^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a) \(5x\left(x-4\right)-x^2+16=0\)
\(4x^2-20x+16=0\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
b) \(x+6x^2+9x^2=0\)
\(x\left(3x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
a). 3. |9 - 2x| - 17 = 16
3. |9 - 2x| = 16 + 17
3. |9 - 2x| = 33
|9 - 2x| = 33 : 3
|9 - 2x| = 11
=> 9 - 2x = 11
2x = 9 - 11
2x = -2
x = - 2 : 2
x = - 1
hay 9 - 2x = - 11
2x = 9 - (- 11)
2x = 9 + 11
2x = 20
x = 20 : 2
x = 10
Vậy x = -1; x = 10
a) 3.| 9 - 2x | -17 = 16
3. | 9 - 2x | = 16 + 17 = 33
| 9 - 2x | = 33 : 3 = 11
\(\Rightarrow\)9 - 2x = 11 hoặc 9 - 2x = -11
2x = 9 - 11 2x = 9 - ( - 11 )
2x = -2 2x = 20
x = -2 : 2 x = 20 : 2
x = -1 x = 10
a)5x(x-4)-x2+16 =0
5x(x-4)-(x2-42) =0
5x(x-4)-(x+4)(x-4)=0
(x-4)(5x-x-4) =0
(x-4)(4x-4) =0
=> x-4=0 hoặc 4x+4=0
x-4=0 hoặc 4x =4
x-4 =0 hoặc x =4:4
Vậy x=4 và x=1
c)x2-4x+3=0
x2-x-3x+3=0
(x2-x)-(3x-3)=0
x(x-1)-3(x-1)=0
(x-1)(x-3) =0
=> x-1=0 hoặc x-3=0
=> x =0+1 hoặc x=0+3
vậy x=1 và x=3
a. 5x(x-4) - x2 + 16 = 0
5x(x-4) - ( x2 - 16 ) = 0
5x(x-4) - ( ( x- 4) (x+4)) = 0
(x-4) ( 5x- x+ 4) = 0
(x-4) x(5-4) =0
(x-4) x1=0
x-4=0 hoặc x1=0
x=4 hoặc x=0
c. x2-4x+3=0
x2-x-3x+3=0
(x2-x) - (3x-3)=0
x(x-1) - 3(x-1) =0
(x-1) (x-3) =0
x-1=0 hoặc x-3=0
x=1 hoặc x=3
\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)
\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
bài 11
a) \(x^2-xy+x\\ =x\left(x-y+1\right)\)
b)
\(x^2-2xy-4+y^2\\ =\left(x^2-2xy+y^2\right)-4\\ =\left(x-y\right)^2-4\\ =\left(x-y-2\right)\left(x-y+2\right)\)
c)
\(x^3-x^2-16x+16\\ =x^2\left(x-1\right)-16\left(x-1\right)\\ =\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
bài 12
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x=26\\ x=-2\)
b)
\(2\left(x+5\right)-x^2-5x=0\\ 2\left(x+5\right)-x\left(x+5\right)=0\\ \left(x+5\right)\left(2-x\right)=0\\ \left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a, x.( x - 2 ) + 2x - 4 = 0
<=> (x-2)(x+2)=0
<=> x=2 V x=-2
b, 5x.(x - 3 ) - x + 3 = 0
<=> (x-3)(5x-1)=0
<=> x=3 V x=1/5
a ) \(x.\left(x-2\right)+2x-4=0\)
\(\Leftrightarrow x^2-2x+2x-4=0\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)
b ) \(5x.\left(x-3\right)-x+3=0\)
\(\Leftrightarrow5x.\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x+1=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-\frac{1}{5}\end{array}\right.\)
Vậy ............
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4