K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Thôi không cần giúp nha , mình biết làm rồi , các bạn xem đúng chưa :

                                    Giải:

\(S=a+\frac{1}{a}=\frac{8a}{9}+\left(\frac{a}{9}+\frac{1}{a}\right)\ge\frac{24}{9}+2\sqrt{\frac{a}{9}.\frac{1}{a}}=\frac{10}{3}\)

Nghĩ mãi 10 phút mới ra

11 tháng 12 2018

Vì \(a\ge3\Rightarrow\hept{\begin{cases}a>0\\\frac{1}{a}>0\end{cases}}\)

Áp dụng bất đẳng thứ Cô si cho 2 số nguyên dương a;1/a ta có:

\(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)\(\Rightarrow S\ge2\)

\(S=2\Leftrightarrow a=\frac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(vì a>0)

Vậy: \(minS=2\Leftrightarrow a=1\)

22 tháng 9 2017

a)  ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)

tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)

=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)

mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)

cộng từng vế ta có \(S\ge9\)

dấu = xảy ra <=> a=b=c=1/2

câu 2 tương tự

22 tháng 9 2017

chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin

23 tháng 4 2017

a/ mk chua tim ra , thong cam 

b/ mk tìm n = -2 ., -1 hoặc 0

11 tháng 3 2020

ĐK: \(x\ge0\)

+) Với x = 0 => A = 0

+) Với x khác 0

Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)

=> \(A\le\frac{4}{3}\)

Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1

Vậy max A = 4/3 tại x = 1

Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN 

a: A là phân số khi 3n+3<>0

=>n<>-1

b: \(A=\dfrac{12}{3\left(n+1\right)}=\dfrac{4}{n+1}\)

Để A nguyên thì \(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)