cho a>0,b>0,c>0. Chứng minh
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>hoặc=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
Nếu \(a+b+c+d\ne0.\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
Nếu \(a+b+c+d=0\) thì hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Áp dụng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(A=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\Leftrightarrow\left(a+b+c\right).\left(a-b-c\right)=\left(a+b-c\right).\left(a-b+c\right)\)
\(\Leftrightarrow-c^2-2bc-b^2+a^2=-c^2+2bc-b^2+a^2\)
\(\Leftrightarrow-2bc=2bc\Rightarrow-bc=bc\Rightarrow\orbr{\begin{cases}b=0\\c=0\end{cases}}\)
=> đpcm
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
\(\Rightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a+b-c\right)\left(a-b+c\right)\)
\(\Rightarrow\left[a+\left(b+c\right)\right]\left[a-\left(b+c\right)\right]=\left[a+\left(b-c\right)\right]\left[a-\left(b-c\right)\right]\)
\(\Rightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Rightarrow\left(b+c\right)^2=\left(b-c\right)^2\Rightarrow b^2+2bc+c^2=b^2-2bc+c^2\)
\(\Rightarrow2bc=-2bc\Rightarrow2bc+2bc=0\Rightarrow4bc=0\Rightarrow\orbr{\begin{cases}b=0\\c=0\end{cases}}\)
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
+ Nếu \(a+b+c+d\ne0\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
+ Nếu \(a+b+c+d=0\)
\(\Rightarrow\) hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3.\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3.\sqrt[3]{1}=3\)
đpcm