Cho tam giac ABC can tai C ( goc C<90) tren BC lay diem D. Ve DM//AB, DN//AC (M thuoc AC, N thuoc AC). Goi E la diem doi xung cua D qua MN
a) CMinh: tam giac DNE can
b) CMinh: AMNE la hinh thang can
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
Ta có : \(\Delta ABC\) cân tại \(A\) \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{cases}}\) ( tính chất ) (1)
Lại có : \(\widehat{ABD}=\widehat{ABC}+\widehat{CBD}=90^o\) (2)
\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=90^o\) (3)
Từ (1) , (2) và (3) \(\Rightarrow\widehat{CBD=}\widehat{BCD}\)
Xét \(\Delta DBC\) có \(\widehat{CBD=}\widehat{BCD}\) (cmt)
\(\Rightarrow\Delta DBC\) cân tại \(D\) (đpcm)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đo: ΔABD=ΔACE
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
xét tam giác ABC có :
A + B + C = 180 độ ( tổng 3 góc trong tam giác )
mà B = C
A + B + B = 180 độ
Thay số : 65 độ + B + B = 180 độ
B + B= 180 độ - 65 độ
2B = 115
B = 115 : 2
B = 57,5
mà B = C
suy ra : C = 57 ,5 độ
chúc bn hok tốt !!
Tam giác ABC cân tại C
=> góc C = 180 độ - góc A / 2
= 180 độ - 65 độ / 2
= 115 độ / 2
= 57 , 5
ta co goc b = goc c (vi tam giac abc can tai a )= goc 180 do - goc a / 2 =180 do - 90 do /2=45 do.
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
cho tam giac ABC can tai A, D la 1 diem nam trong tam giac sao cho goc ADB be hon goc ADC. C/m DB>DC
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C
a: Vì D đối xứng với E qua MN
nên NE=ND
=>ΔNED cân tại N
b: Gọi giao của AD và MN là F, ED với MN là G
Xét tứ giác AMDN có
AM//DN
DM//AN
Do đó; AMDN là hình bình hành
=>F là trung điểm chung của AD và MN
Xét ΔDAE có DF/DA=DG/DE
nên FG//AE và FG=AE/2
=>AE//MN
Xét tứ giác AENM có
AE//NM
AN=ME
Do đó; AENM là hình thang cân