\(\dfrac{10^3+2.5^3+5^3}{55}-\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{10^3+2.5^3+5^3}{55}-\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)\(=\frac{2^3.5^3+2.5^3+5^3}{5.11}-\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{5^3\left(2^3+2+1\right)}{5.11}-\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{5^2.11}{11}-\frac{2.6}{3.5}=25-\frac{4}{5}=\frac{121}{5}\)
\(C=\dfrac{6^3+3\cdot6^2+3^3}{13}=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}=27\)
\(=\dfrac{-2^{12}\cdot3^{10}-2^{12}\cdot3^{10}\cdot5}{-2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2\cdot6}{3\cdot7}=\dfrac{12}{21}=\dfrac{4}{7}\)
Giải:
\(10.\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=10.\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=10.\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=10.\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=10.\dfrac{2^{12}.3^{10}.6}{2^{11}.3^{11}.5}\)
\(=10.\dfrac{2^{13}.3^{11}}{2^{11}.3^{11}.5}\)
\(=10.\dfrac{2^2}{5}\)
\(=2^3=8\)
Vậy ...
a) \(\dfrac{2727-101}{3.303+404}=\dfrac{2626}{909+404}=\dfrac{2626}{1313}=2\)
b) \(\dfrac{8.9-4.15}{12.7-180}=\dfrac{72-60}{84-180}=\dfrac{12}{-96}=\dfrac{-1}{8}\)
c) \(\dfrac{-19}{3^2.7.11}=\dfrac{-19}{9.7.11}=\dfrac{-19}{63.11}=\dfrac{-19}{693}\)
d) \(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+120.6^9}{2^{12}.3^{12}-6^{11}}=\dfrac{2^2.6^{10}+20.6.6^9}{6^{12}-6^{11}}=\dfrac{4.6^{10}+20.6^{10}}{6^{11}\left(6-1\right)}=\dfrac{\left(4+20\right).6^{10}}{5.6^{11}}=\dfrac{24}{30}=\dfrac{4}{5}\)
\(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(=\dfrac{2^{12}.3^{10}.6}{2^{11}.3^{11}.5}=\dfrac{2.6}{3.5}=\dfrac{4}{5}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^9\cdot2^3\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot5}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot5}=\dfrac{2\cdot6}{3\cdot5}=\dfrac{12}{15}=\dfrac{4}{5}\)
ta có : \(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\dfrac{4\left(4^5.9^5+5.6^{10}\right)}{-2^{12}.3^{12}-6^{11}}=\dfrac{4\left(2^{10}.3^{10}+5.6^{10}\right)}{-2^{12}.3^{12}-6^{11}}\)
\(=\dfrac{4\left(6^{10}+5.6^{10}\right)}{-6^{12}-6^{11}}=\dfrac{4.6^{11}}{-6^{11}\left(6+1\right)}=-\dfrac{4}{7}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{-2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}\left(1+5\right)}{2^{11}\cdot3^{11}\cdot\left(2\cdot3-1\right)}=\dfrac{-2}{3}\)
\(=\dfrac{5^3\left(2^3+2+1\right)}{55}-\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=5^2-\dfrac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=25-\dfrac{2}{3}\cdot\dfrac{6}{5}\)
=25-4/5
=24,2