Cho góc xBy=70 độ. trên tỉa Bx lấy điểm A, trên tỉa By lấy điểm C. Gọi M là trung điểm của AC. Qua Ạ kẻ đường thẳng song song với By cắt tỉa BM tại D
CMR: tam giác AMD= tam giác CMB
AB=DC
Kẻ BH vuông góc với AD. Tính góc HBx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BM cắt CA tại M và M là trung điểm của CA
=> BM vuông góc với CA tại M
=> \(\widehat{M_1}=\widehat{M_2}=\widehat{M_3}=\widehat{M_4}=90\text{˚}\)
Vì By//mn nên \(\widehat{C_1}=\widehat{A_1}\) (Hai góc so le trong)
\(\Delta AMD\)và \(\Delta CMB\) có:
AM = MB
\(\widehat{C_1}=\widehat{A_1}\)(Chứng minh trên)
Do đó : \(\Delta AMD=\Delta CMB\left(c.g.vuông-g.nhọn\right)\)
a: Xét ΔAMN có
Ax vừa là đường cao, vừa là phân giác
=>ΔAMN cân tại A
b: BE//AC
=>góc BEM=góc ANE
=>góc BEM=góc BME
=>BE=BM
Xét ΔDEB và ΔDNC có
góc DBE=góc DCN
DB=DC
góc BDE=góc NDC
=>ΔDEB=ΔDNC
=>BE=NC
=>BE=CN
a: Xét ΔBAE và ΔBME có
BA=BM
AE=ME
BE chung
=>ΔBAE=ΔBME
b: Xet ΔBAK và ΔBMK có
BA=BM
góc ABK=góc MBK
BK chung
=>ΔBAK=ΔBMK
=>góc BMK=90 độ
=>MK vuông góc AC
c: Xét tứ giác KFMQ có
MF//KQ
MF=KQ
=>KFMQ là hình bình hành
=>MQ//FK
=>góc CMQ=góc CBK=góc ABK
Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m
Chiều dài là : 15 + 22,5 = 37,5 m
Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m
Diện tích là : 37,5 x 22,5 = 843,75 m2