K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Câu hỏi của jgfhjudfhuvfghdf - Toán lớp 8 | Học trực tuyến

30 tháng 12 2022

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

25 tháng 11 2021

\(=\dfrac{xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)}{xy\left(z+1\right)+y\left(z+1\right)-x\left(z+1\right)-\left(z+1\right)}\\ =\dfrac{\left(z-1\right)\left(xy-y-x+1\right)}{\left(z+1\right)\left(xy+y-x-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)\left(y-1\right)}{\left(z+1\right)\left(x+1\right)\left(y-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)}{\left(z+1\right)\left(x+1\right)}\\ =\dfrac{\left(5003-1\right)\left(5001-1\right)}{\left(5003+1\right)\left(5001+1\right)}=\dfrac{5002\cdot5000}{5004\cdot5002}=\dfrac{5000}{5004}=\dfrac{1250}{1251}\)

17 tháng 7 2021

Dòng cuối sao ra tử như v bạn

31 tháng 8 2021

undefined

2 cái kìa còn lại làm tương tự rồi sau đó cộng lại với nhau sẽ ra 1 số tự nhiên nhé, dễ nên lười đánh nốt lắm :v

1 tháng 9 2021

cam ơn ah. kết quả bằng 3 ah.

28 tháng 1 2023

\(B=\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+ỹ+1}+\dfrac{z+2zx+1}{z+zx+zy+1}\)

\(B=\dfrac{yz\left(x+2xy+1\right)}{yz\left(x+xy+xz+1\right)}+\dfrac{xz\left(y+2yz+1\right)}{xz\left(y+yz+ỹ+1\right)}+\dfrac{xy\left(z+2zx+1\right)}{xy\left(z+zx+zy+1\right)}\)

\(B=\dfrac{\left(1+y\right)+y\left(1+z\right)}{\left(1+y\right)\left(1+z\right)}+\dfrac{\left(1+z\right)+z\left(1+x\right)}{\left(1+z\right)\left(1+x\right)}+\dfrac{\left(1+x\right)+x\left(1+y\right)}{\left(1+x\right)\left(1+y\right)}\)

\(B=\dfrac{y}{1+y}+\dfrac{1}{1+z}+\dfrac{1}{1+x}+\dfrac{z}{1+z}+\dfrac{1}{1+y}+\dfrac{x}{1+x}\)

\(B=\left(\dfrac{y}{1+y}+\dfrac{1}{1+y}\right)+\left(\dfrac{1}{1+z}+\dfrac{z}{1+z}\right)+\left(\dfrac{x}{1+x}+\dfrac{1}{1+x}\right)\)

\(B=1+1+1\)

\(B=3\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)

BĐT cần chứng minh trở thành:

\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)

Thật vậy, áp dụng BĐT Cauchy ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)

Cộng theo vế các BĐT trên và rút gọn :

\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)

\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)

Vậy \((*)\) được chứng minh. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)

NV
14 tháng 1 2021

\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)