Bài 1 : Tìm x biết
a/ x ( x + 4 ) + x + 4=0
b/ x ( x - 3) + 2x - 6 = 0
Bài 2 : rút gọn biểu thức
a/ \(\dfrac{6x^2y^2}{8xy^5}\) b/ \(\dfrac{3x^2-x}{9x^2-6x+1}\) e/ \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
c/ \(\dfrac{x^2-9}{x^2+6x+9}\) d/ \(\dfrac{x^2+2x+1}{3x+3}\)
Bài 3 : thực hiện phép tính ( các mẫu thức đều không buông )
a/ \(\dfrac{15}{2x+6}+\dfrac{5x}{2x+6}\) b/ \(\dfrac{y}{2x^2-xy}+\dfrac{4x}{y^2-2xy}\) c/ \(\dfrac{x-1}{2x^2-2}-\dfrac{x+3}{4x+4}\)
d/ \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\) e/ \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
Bài 4 : Rút gọn và tính các giá trị của biểu thức
a/ \(\dfrac{3x^2-x}{9x^2-6x+1}\) tại x = \(\dfrac{1}{3}\) b/\(\dfrac{x^2-2xy+y^2-9}{x^2-xy+3x}\) Tại x = 2016 ; y = 3
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)