Tìm x,y nguyên sao cho
a)x(y-3)=15
b)xy-2y+3(x-2)=7
c)xy-3x+y=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(x,y-3\right)\in\left\{\left(1;15\right);\left(3;5\right);\left(5;3\right);\left(15;1\right);\left(-1;-15\right);\left(-3;-5\right);\left(-5;-3\right);\left(-15;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(1;18\right);\left(3;8\right);\left(5;6\right);\left(15;4\right);\left(-1;-12\right);\left(-3;-2\right);\left(-5;0\right);\left(-15;2\right)\right\}\)
a.
xy + 3x - 2y - 6 = 5
=>x(y + 3) - 2(y + 3) = 5
=>(x - 2)(y + 3) = 5.
Vì x, y thuộc Z nên x - 2, y + 3 thuộc Z
=> x - 2, y + 3 thuộc ước nguyên của 5
Lập bảng :
x - 2 | -5 | -1 | 1 | 5 |
y + 3 | -1 | -5 | 5 | 1 |
x | -3 | 1 | 3 | 7 |
y | -4 | -8 | 2 | -2 |
Vậy ......
b. Làm tương tự câu a.
c. Ta có x + y = 3 và x - y = 15
Bài này là tổng hiệu của cấp 1, áp dụng cách làm đó thì ta được số lớn là x = (3 + 15) : 2 = 9
Số bé là y = 9 - 15 = -6
d. Ta có : |x| + |y| = 1
=>|x| = 1 - |y|
Vì |x|, |y| >= 0 và |x| = 1 - |y| nên 0 =< |x|, |y| =< 1
Vì x, y thuộc Z nên x = 0 thì y = 1 hoặc -1 và ngược lại y = 0 thì x = 1 hoặc -1
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
a/
\(x\left(3-y\right)+4y=15\Rightarrow x=\frac{15-4y}{3-y}=\frac{12-4y+3}{3-y}=\frac{4\left(3-y\right)+3}{3-y}=4+\frac{3}{3-y}\)(*)
x nguyên khi 3 chia hết cho 3-y => 3-y={-1; -3; 1; 3} => y={4; 6; 2; 0} Thay các giá trị của y vào (*)
=> x={1; 3; 7; 5}
b/
\(\Rightarrow x\left(x-2y\right)+\left(x-2y\right)=\left(x-2y\right)\left(x+1\right)=11\)
Ta nhận thấy nếu x chẵn thì x-2y chẵn => tích chẵn
Nếu x lẻ thì x+1 chẵn => tích chẵn
Đề bài ra tích là 11 lẻ
=>KL: không có giá trị nguyên nào của x; y thỏa mãn đề bài