K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Một số đề thi HK I môn toán 9 - 4 -Đề 4Bài 1.( 1,5điểm)1. Tính giá trị các biểu thức sau: 2 3 2 2− −2. Chứng minh rằng 3 3 112 2++ = Bài 2.(2điểm)Cho biểu thức : A= 21:)11112(−−++++−+ xxxxxxxxa/ Tìm tập xác định của biểu thức Ab/ Rút gọn biểu thức Ac/Chứng minh rằng A> 0 với mọi x ≠1d/Tìm x để A đạt GTLN, tìm GTLN đóBài 3. (2điểm)Cho hai đường thẳng : (d1): y = 122x + và (d2): y = 2x− +1. Vẽ (d1) và (d2) trên cùng một...
Đọc tiếp

Một số đề thi HK I môn toán 9 - 4 -Đề 4Bài 1.( 1,5điểm)1. Tính giá trị các biểu thức sau: 2 3 2 2− −2. Chứng minh rằng 3 3 112 2++ = Bài 2.(2điểm)Cho biểu thức : A= 21:)11112(−−++++−+ xxxxxxxxa/ Tìm tập xác định của biểu thức Ab/ Rút gọn biểu thức Ac/Chứng minh rằng A> 0 với mọi x ≠1d/Tìm x để A đạt GTLN, tìm GTLN đóBài 3. (2điểm)Cho hai đường thẳng : (d1): y = 122x + và (d2): y = 2x− +1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.2. Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Ox , C là giao điểm của (d1) và (d2). Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm)Bài 4. (4,5điểm)Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt ACở N. Gọi H là giao điểm của BN và CM.1) Chứng minh AH ⊥ BC .2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O)3) Chứng minh MN. OE = 2ME. MO4) Giả sử AH = BC. Tính tang BAC

2
10 tháng 12 2018

khó hiểu quá

Bài 4:

1: Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

Do đó: ΔBNC vuông tại N

Xét ΔABC có

BN.CM là các đường cao

BN cắt CM tại H

Do đo: H là trực tâm

=>AH vuông góc với BC

2: góc EMO=góc EMH+góc OMH

=góc EHM+góc OCM

\(=90^0-\widehat{BAH}+\dfrac{180^0-\widehat{MOC}}{2}\)

\(=90^0-\widehat{BCM}+90^0-\dfrac{1}{2}\widehat{MOC}\)

=90 độ

=>ME là tiếp tuyến của (O)

Một số đề thi HK I môn toán 9 - 4 -Đề 4 Bài 2.(2điểm)Cho biểu thức : A= 21:)11112(−−++++−+ xxxxxxxxa/ Tìm tập xác định của biểu thức Ab/ Rút gọn biểu thức Ac/Chứng minh rằng A> 0 với mọi x ≠1d/Tìm x để A đạt GTLN, tìm GTLN đó Bài 3. (2điểm)Cho hai đường thẳng : (d1): y = 122x + và (d2): y = 2x− +1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.2. Gọi A và B lần lượt là giao điểm của (d1) và (d2) với...
Đọc tiếp

Một số đề thi HK I môn toán 9 - 4 -Đề 4

Bài 2.(2điểm)Cho biểu thức : A= 21:)11112(−−++++−+ xxxxxxxxa/ Tìm tập xác định của biểu thức Ab/ Rút gọn biểu thức Ac/Chứng minh rằng A> 0 với mọi x ≠1d/Tìm x để A đạt GTLN, tìm GTLN đó

Bài 3. (2điểm)Cho hai đường thẳng : (d1): y = 122x + và (d2): y = 2x− +1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.2. Gọi A và B lần lượt là giao điểm của (d1) và (d2) với trục Ox , C là giao điểm của (d1) và (d2). Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm)

Bài 4. (4,5điểm)Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt ACở N. Gọi H là giao điểm của BN và CM.1) Chứng minh AH ⊥ BC .2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O)3) Chứng minh MN. OE = 2ME. MO4) Giả sử AH = BC. Tính tang BAC

Xem nội dung đầy đủ tại:https://123doc.org/document/2325060-mot-so-de-thi-hoc-ki-1-mon-toan-lop-9-co-dap-an.htm

1

Bài 4:

1: Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

Do đó: ΔBNC vuông tại N

Xét ΔABC có

BN.CM là các đường cao

BN cắt CM tại H

Do đo: H là trực tâm

=>AH vuông góc với BC

2: góc EMO=góc EMH+góc OMH

=góc EHM+góc OCM

\(=90^0-\widehat{BAH}+\dfrac{180^0-\widehat{MOC}}{2}\)

\(=90^0-\widehat{BCM}+90^0-\dfrac{1}{2}\widehat{MOC}\)

=90 độ

=>ME là tiếp tuyến của (O)

Đề số 1 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HUYỆN THANH OAI ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ II NĂM HỌC: 2016 - 2017 MÔN THI: Toán 7 Thời gian làm bài: 90 phút Câu 1 (3,0 điểm) Điểm kiểm tra môn toán lớp 7A được thống kê như sau: 7 10 5 7 8 10 6 5 7 8 7 6 4 10 3 4 9 8 9 9 4 7 3 9 2 3 7 5 9 7 5 7 6 4 9 5 8 5 6 3 a) Dấu hiệu ở đây là gì? b) Hãy lập bảng "tần số". c) Hãy tính số trung bình cộng và tìm mốt của...
Đọc tiếp

Đề số 1 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HUYỆN THANH OAI ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ II NĂM HỌC: 2016 - 2017 MÔN THI: Toán 7 Thời gian làm bài: 90 phút Câu 1 (3,0 điểm) Điểm kiểm tra môn toán lớp 7A được thống kê như sau: 7 10 5 7 8 10 6 5 7 8 7 6 4 10 3 4 9 8 9 9 4 7 3 9 2 3 7 5 9 7 5 7 6 4 9 5 8 5 6 3 a) Dấu hiệu ở đây là gì? b) Hãy lập bảng "tần số". c) Hãy tính số trung bình cộng và tìm mốt của dấu hiệu? d) Vẽ biểu đồ đoạn thẳng, nhận xét về việc học toán của học sinh lớp 7A. Câu 2 (1,5 điểm): Tính giá trị của biểu thức 2x4 - 5x2 + 4x tại x = 1 và x = -½ Câu 3 (2,0 điểm): Cho hai đa thức: P = 7x2y - 7xy2 + xy + 5 Q = 7xy2 - xy + 3x2y + 10 a, Tìm bậc của hai đa thức trên. b, Tính P + Q; P - Q. Câu 4: (3,0 điểm) Cho ΔABC vuông tại A. Đường phân giác BD. Vẽ DH ⊥ BC (H ∈ BC) a) Chứng minh ΔABD = ΔHBD b) Chứng minh AD < DC c) Trên tia đối AB lấy điểm K sao cho AK = HC. Chứng minh ΔDKC cân Câu 5: (0,5 điểm) Tính nhanh: Đề thi giữa học kì 2 môn Toán lớp 7

0
3 tháng 8 2016

Bài này pạn lấy cách làm ở đâu vậy ?

31 tháng 1 2018

\(a^3+2a^2-1=a^2\left(a+1\right)+a\left(a+1\right)-\left(a+1\right)\)=(a^2+a-1)(a+1)

tương tự mẫu là (a+1)(a^2+a+1)

=> Rút gọn được \(\frac{a^2+a-1}{a^2+a+1}\)

Cho biểu thức:                                                 Tuyển tập đề thi học sinh giỏi lớp 6 môn Toána, Rút gọn biểu thứcb, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.Câu 2: (1 điểm)Tìm tất cả các số tự nhiên có 3 chữ số  sao cho Tuyển tập đề thi học sinh giỏi lớp 6 môn ToánCâu 3: (2 điểm)a. Tìm n để n2 + 2006 là một...
Đọc tiếp

Cho biểu thức:  
                                               Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số  sao cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán
b. Cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán. So sánh A và B.
Câu 5: (2 điểm)
       Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
       Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
ĐỀ SỐ 2
Thời gian làm bài: 120 phút
Câu 1:
a. Tìm các số tự nhiên x, y. sao cho (2x + 1)(y – 5) = 12
b.Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1
c. Tìm tất cả các số Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán, biết rằng số B chia hết cho 99
Câu 2.
a. Chứng tỏ rằng Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán là phân số tối giản.
b. Chứng minh rằng: Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán
Câu 3:
       Một bác nông dân mang cam đi bán. Lần thứ nhất bán 1/2số cam và 1/2 quả; Lần thứ 2 bán 1/3 số cam còn lạivà 1/3 quả; Lần thứ 3 bán 1/4 số cam còn lại và 3/4 quả. Cuối cùng còn lại 24 quả. Hỏi số cam bác nông dân đã mang đi bán.
Câu 4:
       Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào đồng quy. Tính số giao điểm của chúng.
ĐỀ SỐ 3
Thời gian làm bài: 120 phút
Bài 1: (1,5 điểm) Tìm x
a) 5x = 125;                b) 32x = 81;
c) 52x-3 – 2.52 = 52.3;
Bài 2: (1,5 điểm)
Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5
Bài 3: (1,5 điểm)
Cho a là một số nguyên. Chứng minh rằng:
a. Nếu a dương thì số liền sau a cũng dương.
b. Nếu a âm thì số liền trước a cũng âm.
c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?
Bài 4: (2 điểm)
Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.
Bài 5: (2 điểm)
      Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.
Bài 6: (1,5 điểm)
     Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:
a. Góc xOy = xOz = yOz
b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.

giúp minh vai bài nha minh tick cho

nhanh nha trong 1 ngay nay mai

1
12 tháng 4 2016

cái gì vậy bạn, đề nhiều lúc bị thiếu với lại bạn ghi từng bài chứ như thế này ko ai giúp đc bạn đâu

ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC HÈNăm học 2006 – 2007Thời gian: 130 phútBài 1. (2 điểm). Tính giá trị các biểu thức sau:    với x = 0,98Bài 2 (2 điểm)a) Tìm số có 3 chữ số, biết rằng số đó chia hết cho 9 và các chữ số của nó tỉ lệ với 1; 2; 3.b) Biết  . Tính giá trị biểu thức:  Bài 3.(2 điểm)TÌm giá trị nhỏ nhất của các biểu thức sau:   Bài 4 (3 điểm)Cho tam giác ABC. Gọi M, N  theo thứ tự là trung điểm các...
Đọc tiếp

ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC HÈ

Năm học 2006 – 2007

Thời gian: 130 phút

Bài 1. (2 điểm). Tính giá trị các biểu thức sau:

    với x = 0,98

Bài 2 (2 điểm)

a) Tìm số có 3 chữ số, biết rằng số đó chia hết cho 9 và các chữ số của nó tỉ lệ với 1; 2; 3.

b) Biết  . Tính giá trị biểu thức:  

Bài 3.(2 điểm)

TÌm giá trị nhỏ nhất của các biểu thức sau:

   

Bài 4 (3 điểm)

Cho tam giác ABC. Gọi M, N  theo thứ tự là trung điểm các cạnh AB và AC. Trên tia đối của tia NB lấy điểm E sao cho EN = BN. Trên tia đối của tia MC lấy điểm F sao cho FM = FA.

a) Chứng minh AE = FA

b) Chứng minh 3 điểm E, A, F thẳng hàng

c) Gọi I là giao điểm của 2 đường thẳng EC và FB. Chứng minh 3 đường thẳng BE, CF và AI đồng quy

Bài 5. (1 điểm)

Tìm số chính phương có 4 chữ số biết rằng số gồm 2 chữ số đầu lớn hơn số gồm 2 chữ số sau 1 đơn vị.

 

 

 

 

 

0
ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC HÈNăm học 2006 – 2007Thời gian: 130 phútBài 1. (2 điểm). Tính giá trị các biểu thức sau:    với x = 0,98Bài 2 (2 điểm)a) Tìm số có 3 chữ số, biết rằng số đó chia hết cho 9 và các chữ số của nó tỉ lệ với 1; 2; 3.b) Biết  . Tính giá trị biểu thức:  Bài 3.(2 điểm)TÌm giá trị nhỏ nhất của các biểu thức sau:   Bài 4 (3 điểm)Cho tam giác ABC. Gọi M, N  theo thứ tự là trung điểm các...
Đọc tiếp

ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC HÈ

Năm học 2006 – 2007

Thời gian: 130 phút

Bài 1. (2 điểm). Tính giá trị các biểu thức sau:

    với x = 0,98

Bài 2 (2 điểm)

a) Tìm số có 3 chữ số, biết rằng số đó chia hết cho 9 và các chữ số của nó tỉ lệ với 1; 2; 3.

b) Biết  . Tính giá trị biểu thức:  

Bài 3.(2 điểm)

TÌm giá trị nhỏ nhất của các biểu thức sau:

   

Bài 4 (3 điểm)

Cho tam giác ABC. Gọi M, N  theo thứ tự là trung điểm các cạnh AB và AC. Trên tia đối của tia NB lấy điểm E sao cho EN = BN. Trên tia đối của tia MC lấy điểm F sao cho FM = FA.

a) Chứng minh AE = FA

b) Chứng minh 3 điểm E, A, F thẳng hàng

c) Gọi I là giao điểm của 2 đường thẳng EC và FB. Chứng minh 3 đường thẳng BE, CF và AI đồng quy

Bài 5. (1 điểm)

Tìm số chính phương có 4 chữ số biết rằng số gồm 2 chữ số đầu lớn hơn số gồm 2 chữ số sau 1 đơn vị.

0
ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC HÈNăm học 2006 – 2007Thời gian: 130 phútBài 1. (2 điểm). Tính giá trị các biểu thức sau:    với x = 0,98Bài 2 (2 điểm)a) Tìm số có 3 chữ số, biết rằng số đó chia hết cho 9 và các chữ số của nó tỉ lệ với 1; 2; 3.b) Biết  . Tính giá trị biểu thức:  Bài 3.(2 điểm)TÌm giá trị nhỏ nhất của các biểu thức sau:   Bài 4 (3 điểm)Cho tam giác ABC. Gọi M, N  theo thứ tự là trung điểm các...
Đọc tiếp

ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC HÈ

Năm học 2006 – 2007

Thời gian: 130 phút

Bài 1. (2 điểm). Tính giá trị các biểu thức sau:

    với x = 0,98

Bài 2 (2 điểm)

a) Tìm số có 3 chữ số, biết rằng số đó chia hết cho 9 và các chữ số của nó tỉ lệ với 1; 2; 3.

b) Biết  . Tính giá trị biểu thức:  

Bài 3.(2 điểm)

TÌm giá trị nhỏ nhất của các biểu thức sau:

   

Bài 4 (3 điểm)

Cho tam giác ABC. Gọi M, N  theo thứ tự là trung điểm các cạnh AB và AC. Trên tia đối của tia NB lấy điểm E sao cho EN = BN. Trên tia đối của tia MC lấy điểm F sao cho FM = FA.

a) Chứng minh AE = FA

b) Chứng minh 3 điểm E, A, F thẳng hàng

c) Gọi I là giao điểm của 2 đường thẳng EC và FB. Chứng minh 3 đường thẳng BE, CF và AI đồng quy

Bài 5. (1 điểm)

Tìm số chính phương có 4 chữ số biết rằng số gồm 2 chữ số đầu lớn hơn số gồm 2 chữ số sau 1 đơn vị.

4

Bài 2:

a) Gọi số có 3 chữ số cần tìm là \(\overline{abc}\) ; theo đề bài ra số cần tìm phải thỏa mãn với điều kiện tổng \(\overline{\left(a+b+c\right)}⋮9\) 

Phải thỏa mãn 3 trường hợp sau:

(1) \(\overline{\left(a+b+c\right)}=9\) 

(2) \(\overline{\left(a+b+c\right)}=18\) 

(3) \(\overline{\left(a+b+c\right)}=27\) 

Vì \(\overline{abc}\) là các thừa số của 1 số có 3 chữ số nên tỉ lệ thức chung là \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) 

Ta có: \(\overline{\left(a+b+c\right)}:\left(1+2+3\right)\in\) N*

(1) \(\overline{\left(a+b+c\right)}=9\) 

\(\Rightarrow k=\dfrac{9}{6}=1,5\) (loại)

(2) \(\overline{\left(a+b+c\right)}=18\) 

\(\Rightarrow k=\dfrac{18}{6}=3\) (t/m)

(3) \(\overline{\left(a+b+c\right)}=27\) 

\(\Rightarrow k=\dfrac{27}{6}=4,5\) (loại)

Vậy ta có: duy nhất trường hợp \(\overline{\left(a+b+c\right)}=18\) 

Suy ra \(k=3\) 

Vậy \(\dfrac{a}{1}=3;\dfrac{b}{2}=3;\dfrac{c}{3}=3\) 

\(\Rightarrow a=3;b=6;c=9\) 

Vậy \(\overline{abc}=369\)

Bài 5:

Đặt \(\overline{abcd}=k^2\) ta có \(\overline{ab}-\overline{cd}=1\) và \(k\in N\) , \(32\le k< 100\) 

\(\Rightarrow101\overline{cd}=k^2-100=\left(k-10\right).\left(k+10\right)\) 

\(\Rightarrow\left(k-10\right)⋮101\) hoặc \(\left(k+10\right)⋮101\)

Mà \(Ư\left(k-10;101\right)=1\) 

\(\Rightarrow\left(k+10\right)⋮101\) 

Vì \(32\le k< 100\) nên \(42\le k\pm10< 101\) 

\(\Rightarrow k=91^2\) 

\(\Rightarrow\overline{abcd}=91^2=8281\)

1: ĐKXĐ: \(a\ge0\)