K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2023

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)

\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)

\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

CD=CM+MD

mà CM=CA và DM=DB

nên CD=CA+DB

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=CM\cdot MD\)

=>\(AC\cdot BD=R^2\) 

c: CM=CA

OM=OA

Do đó: CO là đường trung trực của AM

=>CO\(\perp\)AM tại E

DM=DB

OM=OB

Do đó: OD là đường trung trực của MB

=>OD\(\perp\)MB tại F

Xét tứ giác MEOF có

\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)

=>MEOF là hình chữ nhật

=>EF=OM=R

a: Xét (O) có
MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên MO là trung trực của AC

=>MO vuông góc AC tại E

góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

góc ADM=góc AEM=90 độ

=>AMDE nội tiếp

b: ΔMAB vuông tại A có AD là đường cao

nên MA^2=MD*MB

loading...  loading...  

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔADB vuông tại A có AC là đường cao

nên \(AD^2=DB\cdot DC\)

b: Xét (O) có

EC là tiếp tuyến

EA là tiếp tuyến

Do đó: EC=EA
=>ΔECA cân tại C

=>góc ECA=góc EAC

\(\Leftrightarrow90^0-\widehat{ECA}=90^0-\widehat{EAC}\)

hay \(\widehat{EDC}=\widehat{ECD}\)

=>ΔECD cân tại E

=>ED=EC
mà EC=EA
nên EA=ED

hay E là trung điểm của AD

27 tháng 1 2022

có hình không bạn

a: góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc AEM=góc ADM=90 độ

=>AEDM nội tiếp

b: Xét ΔMAB vuông tại A có AD vuông góc MB

nên MA^2=MD*MB

a: Xét (O) có

DB,DC là tiếp tuyến

=>DB=DC

DB=DC

OB=OC

Do đó: OD là đường trung trực của BC

=>OD vuông góc BC

b: Xét (O) có

DB,DC là tiếp tuyến

Do đó: DO là phân giác của góc CDB

BC//GE

DO vuông góc BC

Do đó: DO vuông góc GE

Xét ΔDGE có

DO vừa là đường cao, vừa là đường phân giác

Do đó: ΔDGE cân tại D

=>DG=DE

ΔDGE cân tại D

mà DO là đường cao

nên O là trung điểm của GE

=>OG=OE

c: OG//BC

=>góc AOG=góc ABC(đồng vị) và góc COG=góc OCB(hai góc so le trong)

mà góc ABC=góc OCB

nên góc AOG=góc COG

=>OG là phân giác của góc COA

Xét ΔOCG và ΔOAG có

OC=OA

góc COG=góc AOG

OG chung

Do đó: ΔOCG=ΔOAG

=>góc OAG=góc OCG=90 độ

=>AG là tiếp tuyến của (O)