Cho ΔABC vuông tại B. Gọi D là trung điểm của cạnh AC. Trên tia đối của tia DB lấy điểm E sao cho DB=DE.
a) C/M ΔABD=ΔACD
b)C/M góc BCE = 90 độ
c)C/M IK // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tg ABC vuông tại A
Áp dụng định lí Pitago ta có,
BC2=AC2+AB2, thay số
BC2= 82+62
BC2= 64+36
BC2= 100
BC2=102 \(\Rightarrow\)BC=10
b) Do DE vừa là đường cao vừa là đường trung tuyến nên tam giác DBC cân suy ra góc DBC bằng góc DCB
Bài 2
Bài làm
a) Xét tam giác ABM và tam giác DCM có:
BM = MC ( Do M là trung điểm BC )
^AMB = ^DMC ( hai góc đối )
MD = MA ( gt )
=> Tam giác ABM = tam giác DCM ( c.g.c )
b) Xét tam giác BHA và tam giác BHE có:
HE = HA ( Do H là trung điểm AE )
^BHA = ^BHE ( = 90o )
BH chung
=> Tam giác BHA = tam giác BHE ( c.g.c )
=> AB = BE
Mà tam giác ABM = tam giác DCM ( cmt )
=> AB = CD
=> BE = CD ( đpcm )
Bài 3
Bài làm
a) Xét tam giác ABD và tam giác ACD có:
AB = AB ( gt )
BD = DC ( Do M là trung điểm BC )
AD chung
=> Tam giác ABD = tam giác ACD ( c.c.c )
b) Xét tam giác BEC và tam giác MEA có:
AE = EC ( Do E kà trung điểm AC )
^BEC = ^MEA ( hai góc đối )
BE = EM ( gt )
=> Tam giác BEC = tam giác MEA ( c.g.c )
=> BC = AM
Mà BD = 1/2 . BC ( Do D là trung điểm BC )
hay BD = 1/2 . AM
Hay AM = 2.BD ( đpcm )
c) Vì tam giác ABD = tam giác ACD ( cmt )
=> ^ADB = ^ADC ( hai góc tương ứng )
Mà ^ADB + ^ADC = 180o ( hai góc kề bù )
=> ^ADB = ^ADC = 180o/2 = 90o
=> AD vuông góc với BC (1)
Vì tam giác BEC = tam giác MEA ( cmt )
=> ^EBC = ^EMA ( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong
=> AM // BC (2)
Từ (1) và (2) => AM vuông góc với AD
=> ^MAD = 90o
# Học tốt #
b: Xét tứ giác AECB có
D là trung điểm của AC
D là trung điểm của EB
Do đó: AECB là hình bình hành
Suy ra: AB//CE
d: Xét ΔECA có
I là trung điểm của EC
D là trung điểm của AC
Do đó: ID là đường trung bình
=>ID//AE
hay IM//AE//BC
Xét hình thang AECB có
I là trug điểm của AE
IM//BC//AE
Do đó: M là trung điểm của AB
=>AB=2AM
mà EC=AB
nên EC=2AM
1.a. xet tam giac ABD va tam giac CDE co : b.B1=B2=450ma vi cai cau a nen C1=C2=450. Vay C=900
AD=AC (vi D la trung diem cua AC) 2.a Xet tam giac ODC va tam giac OAB co
DB = DE (gt) OA=OC(gt) ; OD= OB (gt) ; goc DOC=goc AOB
goc ADB = goc EDC (doi dinh) Suy ra tam giac ODC=tam giac OAB (c.g.c) . Vay AB song
suy ra tam giac ABD = tam giac CDE (c.g.c) song voi CD . HET GIAY RUI
\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))
Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)
\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)
\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)
\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)
\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)
Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng
a: Xét ΔDBA và ΔDEC có
DB=DE
góc ADB=góc CDE
DA=DC
Do đó: ΔDBA=ΔDEC
b: ΔDBA=ΔDEC
nên góc DBA=góc DEC
=>AB//EC
=>EC vuông góc với CB