Tìm các ƯCLN của :
a)2mũ3 x 3mũ2 và 2mũ4 x 3 x 5mũ2
b)2mũ3 x 3 mũ 2 ; 2 mũ 2 x 3 x 5 và 2 mũ 4 x 3 x7 mũ 3
c)38 ; 76 ; 92
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225
4(x - 5) - 23 = 24 . 3
4(x - 5) - 8 = 48
4(x - 5) = 48 + 8
4(x - 5) = 56
x - 5 = 56 : 4
x - 5 = 14
x = 14 + 5
x = 19
Vậy x = 19
`4(x-5)-2^3=2^{4}.3`
`=>4(x-5)-8=16.3=48`
`=>4(x-5)=48+8=56`
`=>x-5=56:4=14`
`=>x=19`
Vậy `x=19`
a) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)-10=40\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow x+7=\dfrac{50}{5}\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
b) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x-18=81\)
\(\Rightarrow9x=81+18\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
c) \(5^{25}\cdot5^{x-1}=5^{25}\)
\(\Rightarrow5^{x-1}=5^{25}:5^{25}\)
\(\Rightarrow5^{x-1}=1\)
\(\Rightarrow5^{x-1}=5^0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
a) 5(�+7)−10=23⋅55(x+7)−10=23⋅5
⇒5(�+7)−10=40⇒5(x+7)−10=40
⇒5(�+7)=40+10⇒5(x+7)=40+10
⇒�+7=505⇒x+7=550
⇒�+7=10⇒x+7=10
⇒�=10−7⇒x=10−7
⇒�=3⇒x=3
b) 9�−2⋅32=349x−2⋅32=34
⇒9�−18=81⇒9x−18=81
⇒9�=81+18⇒9x=81+18
⇒9�=99⇒9x=99
⇒�=999⇒x=999
⇒�=11⇒x=11
c) 525⋅5�−1=525525⋅5x−1=525
⇒5�−1=525:525⇒5x−1=525:525
⇒5�−1=1⇒5x−1=1
⇒5�−1=50⇒5x−1=50
⇒�−1=0⇒x−1=0
⇒�=1⇒x=1
2 + 21 + 22 + 23 + ... + 211
= 20 + 21 + 22 + 23 + ... + 211
= 20 . ( 1 + 2 + 4 + 8 + 16 + 32 ) + 26 . ( 1 + 2 + 4 + 8 + 16 + 32 )
= 20 . 63 + 26 . 63
= ( 20 + 26 ) . 63
Do 63 : 9 nên ( 20 + 26 ) . 63 chia hết cho 9 hay 2 + 21 + 22 + 23 + .. + 211 chia hết cho 9
Vậy 2 + 21 + 22 + 23 + ... + 211 chia hết cho 9
A = 2 + 2² + 2³ + 2⁴ + 2⁵ + ... + 2¹⁰⁰
= 2 + 2².(1 + 2 + 2²) + 2⁵.(1 + 2 + 2²) + ... + 2⁹⁸.(1 + 2 + 2²)
= 2 + 7.2² + 7.2⁵ + ... + 7.2⁹⁸)
= 2 + 7.(2² + 2⁵ + ... + 2⁹⁸)
Vậy số dư khi chia A cho 7 là 2
\(A=2+2^2+2^3+2^4+2^5+...+2^{100}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+2^{100}\)
\(=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{97}\left(1+2+4\right)+2^{100}\)
\(=7\left(2+2^4+...+2^{97}\right)+2^{100}\)
\(Vì7⋮7=>7\left(2+2^4+..+2^{97}\right)⋮7\)
Ta có:
\(2^3\equiv1\left(mod7\right)\)
\(2^{3.33}\equiv1^{33}\left(mod7\right)\equiv1\left(mod7\right)\)
\(2^{3.33}=2^{99}=>2^{100}=2^{99}.2\equiv1.2\left(mod7\right)\equiv2\left(mod7\right)\)
\(=>2^{100}\) chia \(7\) dư \(2\) mà \(7\left(2+2^4+...+2^{97}\right)⋮7\)
\(=>A\) chia \(7\) dư \(2\)
Bạn ấy viết như thế này nè :
2 - 22 + 23 - 24+...+269