Cho PT \(\dfrac{5x+5}{2x^2+2x}\)
a, Tìm đk của x để gtri của PT đc xác định
b, Tính gtri của PT tại x= 5 , x=0
Cần gấp. Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\ne0\) , \(x\ne-1\) , \(x\ne1\)
b)
\(A=\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right).\dfrac{3x}{1-2x+x^2}\)
\(=\left(\dfrac{1}{x\left(x+1\right)}-\dfrac{2-x}{x+1}\right).\dfrac{3x}{\left(x-1\right)^2}\)
\(=\left(\dfrac{1-\left(2-x\right).x}{x\left(x+1\right)}\right).\dfrac{3x}{\left(x-1\right)^2}\)
\(=\dfrac{1-2x+x^2}{x\left(x+1\right)}.\dfrac{3x}{\left(x-1\right)^2}\)
\(=\dfrac{\left(x-1\right)^2.3x}{x\left(x+1\right)\left(x-1\right)^2}\)
\(=\dfrac{3x}{x\left(x+1\right)}=\dfrac{3}{x+1}\)
Với x =5 , ta có :
\(A=\dfrac{3}{5+1}=\dfrac{3}{6}=\dfrac{1}{2}\)
Với x =0, ta có ;
\(A=\dfrac{3}{0+1}=3\)
Vậy x = 5 \(\Leftrightarrow\) \(A=\dfrac{1}{2}\)
\(x=0\Leftrightarrow A=3\)
a ) Để Phương trình trên xác định thì : \(x^3-8\ne0\Rightarrow x^3\ne8\Rightarrow x\ne2\)
Vậy với \(x\ne2\) thì phương trình trên xác định
b) Ta có \(\dfrac{3x^2+6x+12}{x^3-8}=0\Rightarrow3x^2+6x+12=0\)
\(\Rightarrow3\left(x^2+2x+4\right)=0\Rightarrow3\left(x^2+2x+1+3\right)=0\)
\(\Rightarrow3\left[\left(x+1\right)^2+3\right]=0\)
Ta có \(\left(x+1\right)^2\ge0\forall x\) \(\Rightarrow\left(x+1\right)^2+3\ge3\)
\(\Rightarrow3\left[\left(x+1\right)^2+3\right]\ge3>0\)
Vậy phương trình vô nghiệm
Phần a,b mình vừa trả lời r bạn xem lại nha
c) Với\(x\ne0;x\ne1;x\ne-1\)
Để \(\)A nhận giá trị nguyên thì \(\dfrac{3}{x+1}\) nguyên
\(\Rightarrow x+1\in\)ước nguyên của 3
\(\Rightarrow x+1\in\left\{1;-1;3;-3\right\}\)
Ta có bảng:
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
(tm) | (tm) | (ktm) | (tm) |
Vậy...
a) để A xát định thì
\(\left[{}\begin{matrix}2x+10\ne0\\x\ne0\\2x\left(x-5\right)\ne0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}2x\ne-10\\x\ne0\\\left[{}\begin{matrix}2x\ne0\\x-5\ne0\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x\ne-5\\x\ne0\\\left[{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x\ne0\\x\ne-5\\x\ne5\end{matrix}\right.\) thì A được xác định
a)Đk:\(2x^2+2x\ne0\Rightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x\ne0\\x\ne-1\end{array}\right.\) thì phân thức xác định
b)\(\frac{5x+5}{2x^2+2x}=\frac{5\left(x+1\right)}{2x\left(x+1\right)}=\frac{5}{2x}\). Giá trị phân thức =1
\(\Rightarrow\frac{5}{2x}=1\Rightarrow5=2x\Rightarrow x=\frac{5}{2}\)
a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\left[{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
b) \(M=\dfrac{5x+5}{2x^2+2x}=\dfrac{5\left(x+1\right)}{2x\left(x+1\right)}=\dfrac{5}{2x}\)
Vì ĐKXĐ x khác 0 nên ta chỉ xét trường hợp x = 5
\(M=\dfrac{5}{2x}=\dfrac{5}{2\cdot5}=\dfrac{1}{2}\)
Vậy........
a, PT xác định khi 2x2+2x ≠0 ⇔2x(x+2) ≠0 ⇔\([\)\(\dfrac{x\ne0}{x\ne-2}\)
b, x=5 PT trở thành \(\dfrac{5.5+5}{2.5^2+2.5}\) =\(\dfrac{30}{60}\) =0,5
do x ≠0 nên x=0 không được