K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

Công thức đặc biệt: a chia b dư 0 hoặc 1 thì an cũng chia b dư 0 hoặc 1.

a, Ta thấy 10 chia cho 9 dư 1 => 102011 chia cho 9 dư 1

                                            Mà 8 chia cho 9 dư 8

Từ 2 điều trên => 102011 + 8 chia 9 dư 1 + 8 hay chia hết cho 9

Vậy...

b, Vì 13a5b chia hết cho 5 => b thuộc {0; 5}

+ Nếu b = 0 thì ta có:

13a50 chia hết cho 3 

=> 1 + 3 + a + 5 + 0 chia hết cho 3

=> 9 + a chia hết cho 3

=> a thuộc {0; 3; 6; 9}

Vậy...

+ Nếu b = 5 thì ta có:

13a55 chia hết cho 3

=> 1 + 3 + a + 5 + 5 chia hết cho 3

=> 14 + a chia hết cho 3

=> a thuộc {1; 4; 7}

Vậy...

 

16 tháng 5 2017

a.

A = 5 + 5^2 + 5^3 +...+5^100

5A = 5^2 + 5^3 +...+5^101

4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]

A = \(\frac{5^{101}-5}{4}\)

b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5

=> A là hợp số

c, 

A = 5 + 5^2 + 5^3 +... + 5^100

A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]

A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]

A = 30 + 5^2.30 + ... + 5^98 . 30 

=> A chia hết cho 30

d.

Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]

Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]

=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]

Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng

Mà A chỉ có 4 chữ số 0

=> A không phải số chính phương

Ủng hộ mik nếu thấy OK   Nha mấy bạn >..<

31 tháng 12 2021

[cm trên] là j vậy?

30 tháng 10 2017

3 tháng 1 2020

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

25 tháng 6 2023

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

10 tháng 11 2023

Bài 2: 

a) Ta có: \(\overline{1a3b}\) số này chia hết cho 2 và 5 nên: \(b=0\)  

Mà số này lại chia hết cho 3 nên: 

\(1+a+3+b=4+a+0=4+a\) ⋮ 3 

TH1: \(4+a=6\Rightarrow a=2\)

TH2: \(4+a=9\Rightarrow a=5\)

TH3: \(4+a=12\Rightarrow a=8\) 

Vậy: \(\left(a;b\right)=\left(2;0\right);\left(5;0\right);\left(8;0\right)\) 

b) Ta có: \(\overline{2a31b}\) chia hết cho 45 nên số đó phải chia hết cho 5 và 9 

Mà \(\overline{2a31b}\) chia hết cho 5 nên: \(b\in\left\{0;5\right\}\)

Lại chia hết cho 9 nên: \(2+a+3+1+b=6+a+b\) ⋮ 9

Với b = 0:

\(6+a+0=9\Rightarrow a=3\)

Với b = 5: 

\(6+a+5=18\Rightarrow a=7\)

Vậy: \(\left(a;b\right)=\left(3;0\right);\left(7;5\right)\)

10 tháng 11 2023

Bài 3:

a) \(13\cdot15\cdot17\cdot19+23\cdot26\)

\(=13\cdot\left(15\cdot17\cdot19+23\cdot2\right)\)

Nên tổng chia hết cho 13 tổng là hợp số không phải SNT 

b) \(17^{100}-34\)

\(=17\cdot\left(17^{99}-2\right)\)

Nên hiệu chia hết cho 17 hiệu là hợp số không phải SNT