chung minh a^4 +b^4 +c^4=2(ab+bc+ac)^2 biet rang a+b+c=0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
D
0
LA
9 tháng 3 2018
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{\left(ab+ac\right)+\left(ba+bc\right)-\left(ca+cb\right)}{2+3-4}=\frac{2ab}{1}\)
Tương tự \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{2bc}{5}\)
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{2ac}{3}\)
Do đó \(\frac{2ab}{1}=\frac{2bc}{5}\Rightarrow\frac{a}{1}=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\)
\(\frac{2bc}{5}=\frac{2ac}{3}\Rightarrow\frac{b}{5}=\frac{a}{3}\)
Do vậy \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
22 tháng 4 2022
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Tương tự
Do đó
Do vậy
DD
0
NB
0
NM
0
a+b+c=0 <=> (a+b+c)2=0
<=>a2+b2+c2+2(ab+bc+ca)=0
<=>a2+b2+c2=-2(ab+bc+ca)
<=>(a2+b2+c2)2=[-2(ab+bc+ca)]2
<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2b2+b2c2+c2a2)
<=>a4+b4+c4=2(a2b2+b2c2+c2a2) (1)
Lại có (ab+bc+ca)2 = a2b2+b2c2+c2a2+2abc(a+b+c) = a2b2+b2c2+c2a2 (vì a+b+c=0) (2)
Từ (1) và (2) => đpcm