K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(1/2x^2-1/3y^2)(1/2x^2+1/3y^2)

=(1/2x^2)^2-(1/3y^2)^2

=1/4x^4-1/9y^4

=>a=1/4

Câu 1 Giá trị x>0 thỏa mãn \dfrac{x}{-10}=\dfrac{-10}{x}−10x​=x−10​ là  Câu 2 Biết rằng a:b=-2,4:3,8a:b=−2,4:3,8 và 2a+b=-62a+b=−6. Giá trị của a+b=a+b= (Nhập kết quả dưới dạng số thập phân đơn giản nhất ) Câu 3 Biết rằng a:b=3:5a:b=3:5 và 3a-b=17,23a−b=17,2. Giá trị của a+b=a+b= (Nhập kết quả dưới dạng số thập phân đơn giản nhất) Câu 4 Tập hợp các giá trị xx thỏa...
Đọc tiếp
  • Câu 1

     

    Giá trị x>0 thỏa mãn \dfrac{x}{-10}=\dfrac{-10}{x}−10x​=x−10​ là

     

     

  • Câu 2

     

    Biết rằng a:b=-2,4:3,8a:b=−2,4:3,8 và 2a+b=-62a+b=−6. Giá trị của a+b=a+b=

     

    (Nhập kết quả dưới dạng số thập phân đơn giản nhất )

     

  • Câu 3

     

    Biết rằng a:b=3:5a:b=3:5 và 3a-b=17,23a−b=17,2. Giá trị của a+b=a+b=

     

    (Nhập kết quả dưới dạng số thập phân đơn giản nhất)

     

  • Câu 4

     

    Tập hợp các giá trị xx thỏa mãn: \dfrac{x}{-4}=\dfrac{-9}{x}−4x​=x−9​ là {

     

    }
    (Nhập kết quả theo giá trị tăng dần, ngăn cách nhau bởi dấu ";")

     

  • Câu 5

     

    Số giá trị xx thỏa mãn \dfrac{2x}{42}=\dfrac{28}{3x}422x​=3x28​ là

     

     

  • Câu 6

     

    Số giá trị xx thỏa mãn \dfrac{6\dfrac{1}{4}}{x}=\dfrac{x}{1,96}x641​​=1,96x​ là

     

     

  • Câu 7

     

    Cho 2 số x, yx,y thỏa mãn (2x+1)^2+|y-1,2|=0(2x+1)2+∣y−1,2∣=0. Giá trị x+y=x+y=

     

    (Nhập kết quả dưới dạng số thập phân đơn giản nhất )

     

  • Câu 8

     

    Giá trị nhỏ nhất của biểu thức C=\dfrac{1}{3}(x-\dfrac{2}{5})^2+|2y+1|-2,5C=31​(x−52​)2+∣2y+1∣−2,5 là

     

    (Nhập kết quả dưới dạng số thập phân đơn giản nhất)

     

  • Câu 9

     

    Cho 2 số x, yx,y thỏa mãn (2x+1)^2+|y+1,2|=0(2x+1)2+∣y+1,2∣=0. Giá trị x+y=x+y=

     

    (nhập kết quả dưới dạng số thập phân gọn nhất )

     

  • Câu 10

     

    Cho a:b:c=3:4:5a:b:c=3:4:5 và a+2b+3c=44,2a+2b+3c=44,2. Giá trị của a+b-c=a+b−c=

     

    (nhập kết quả dưới dạng số thập phân đơn giản nhất)

     

0

a: \(A=\dfrac{1}{\left(3-1\right)\left(3+1\right)}+\dfrac{1}{\left(5-1\right)\left(5+1\right)}+...+\dfrac{1}{\left(99-1\right)\left(99+1\right)}\)

\(=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{98\cdot100}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{49}{100}=\dfrac{49}{200}\)

 

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

24 tháng 1 2022

k làm đc k cần phải ghi zậy mô ha

NV
24 tháng 1 2022

1.

\(y^2+y\left(x^3+x^2+x\right)+x^5-x^4+2x^3-2x^2\)

\(\Delta=\left(x^3+x^2+x\right)^2-4\left(x^5-x^4+2x^3-2x^2\right)\)

\(=\left(x^3-x^2+3x\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}y=\dfrac{-x^3-x^2-x+x^3-x^2+3x}{2}=-x^2+x\\y=\dfrac{-x^3-x^2-x-x^3+x^2-3x}{2}=-x^3-2x\end{matrix}\right.\)

Hay đa thức trên có thể phân tích thành:

\(\left(x^2-x+y\right)\left(x^3+2x+y\right)\)

Dựa vào đó em tự tách cho phù hợp

18 tháng 12 2021

\(3,=\left(\dfrac{13}{25}-\dfrac{38}{25}\right)+\left(\dfrac{14}{9}-\dfrac{5}{9}\right)=-1+1=0\\ 4,=\left(\dfrac{4}{9}\right)^5\cdot\left(\dfrac{9}{49}\right)^5=\left(\dfrac{4}{9}\cdot\dfrac{9}{49}\right)^5=\left(\dfrac{4}{49}\right)^5\\ 5,\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{x+y}{5+3}=\dfrac{2}{2}=\dfrac{x+y}{8}\Rightarrow x+y=8\\ 6,\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\Rightarrow2\text{ giá trị}\\ 7,=\dfrac{3^{10}\cdot2^{30}}{2^9\cdot3^9\cdot2^{20}}=2\cdot3=6\)

18 tháng 12 2021

Câu 7:

=6

10 tháng 1 2022

\(\left(\dfrac{1}{3}.x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\left(\dfrac{1}{3}.x\right)^3+\left(2y\right)^3=\dfrac{1}{27}x^3+8y^3\)

b: \(f\left(x\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)

NV
4 tháng 1 2021

1.

- Với \(a+b\ge4\Rightarrow A\le0\)

- Với \(a+b< 4\Rightarrow4-a-b>0\)

\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)

\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)

\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)

2.

\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)

\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)

\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)

 

NV
4 tháng 1 2021

Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai

Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút

Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)