Cho hình chữ nhật ABCD có CD=4c, BC=3cm. Gọi H là hình chiếu của C trên BD. Tính SADH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét hai tam giác vuông \(HAD\) và ABD có:
\(\left\{{}\begin{matrix}\widehat{DAH}=\widehat{DAB}\left(\text{cùng phụ }\widehat{ADB}\right)\\\widehat{DHA}=\widehat{DAB}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta HAD\sim\Delta ABD\) (g.g)
\(\Rightarrow\dfrac{HD}{AD}=\dfrac{AD}{BD}\Rightarrow HD=\dfrac{AD^2}{BD}\)
Áp dụng định lý Pitago: \(BD=\sqrt{AB^2+AD^2}=\sqrt{AB^2+BC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(\Rightarrow HD=\dfrac{6^2}{10}=3,6\left(cm\right)\)
b.
Theo cmt, do hai tam giác HAD và ABD đồng dạng
\(\Rightarrow\dfrac{HA}{AB}=\dfrac{AD}{BD}\Rightarrow HA.BD=AB.AD\)
Mà ABCD là hcn \(\Rightarrow AB=CD\)
\(\Rightarrow HA.BD=CD.AD\) (đpcm)
a: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
b: CH=3*4/5=2,4cm
c: DH=DC^2/BD=4^2/5=3,2ccm