CMR : A = \(\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)....\left(2n-1\right).2n}{2^n}\) là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\) (1)
với mọi n \(\in\)N* , bằng phương pháp quy nạp
Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)
=> (1) đúng khi n = 1
Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có :
\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)
Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
=> Từ giả thiết quy nạp ta có :
\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)
\(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)
\(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)
\(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)
Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*
Ko có điều kiện n tự nhiên (hoặc nguyên) thì bạn nhờ ai cũng thế thôi, đầu hàng hết vì ko tự nhiên thì nó làm gì có quy luật để mà giải
Chỉ chứng minh được với điều kiện \(n\in N\)* (với \(n\) nguyên âm thì hiển nhiên quy luật trên tử số có vấn đề về mặt sắp xếp, \(n+1< n+2\) nhưng \(n+1>2n\) , còn với n không nguyên thì nó chẳng có quy luật nào cho tử số cả, \(n=0\) thì hmmm, tử số ko có quy luật nhưng chắc chắn =0)
Ta sử dụng quy nạp:
- Với \(n=1\Rightarrow x=\frac{2}{2^1}=1\) nguyên (đúng)
- Với \(n=2\Rightarrow x=\frac{3.4}{2^2}=3\) nguyên (đúng)
- Giả sử \(x\) là số nguyên với \(n=k\) tức là:
\(\frac{\left(k+1\right)\left(k+2\right)...\left(2k-1\right)2k}{2^k}\) nguyên
- Ta cần chứng minh \(x\) cũng nguyên với \(n=k+1\)
Thật vậy, khi đó:
\(x=\frac{\left(k+2\right)\left(k+3\right)...\left(2k+1\right)\left(2k+2\right)}{2^{k+1}}=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}.\frac{\left(2k+1\right)\left(2k+2\right)}{2.\left(k+1\right)}\)
\(=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}.\left(2k+1\right)\)
Do \(\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}\) nguyên và \(2k+1\) nguyên
\(\Rightarrow x=\frac{\left(k+1\right)\left(k+2\right)...2k}{2^k}\left(2k+1\right)\) nguyên (đpcm)
a, 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn
=> x là số chẵn, mà x là số nguyên tố
=> x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 ‐ 118
=> 46y = 1886
=> y = 1886:46 => y = 41
Vậy x = 2; y = 41
Ta có: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}\)
\(=\frac{1.2.3.4..5.6...\left(2n-1\right).2n}{\left(2.4.6....2n\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)
\(=\frac{1.2.3.4.5.6...\left(2n-1\right)}{2^n.1.2.3....n\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)
\(=\frac{1}{2^n}\left(đpcm\right)\)