K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
28 tháng 1 2021

\(A=1-\left(\frac{2}{1+2\sqrt{x}}-\frac{5\sqrt{x}}{4x-1}-\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)

\(=1-\left(\frac{2\left(1-2\sqrt{x}\right)+5\sqrt{x}-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(1-2\sqrt{x}\right)}\right):\frac{\sqrt{x}-1}{\left(1+2\sqrt{x}\right)^2}\)

\(=1-\frac{1-\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(1-2\sqrt{x}\right)}.\frac{\left(1+2\sqrt{x}\right)^2}{\sqrt{x}-1}=1-\frac{1+2\sqrt{x}}{1-2\sqrt{x}}=2-\frac{2}{1-2\sqrt{x}}\)

để A là số nguyên thì \(1-2\sqrt{x}\) là ước của 2 khi đó ta tìm được \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
6 tháng 4 2017

\(A=\frac{x^2+2x+5}{x+1}=\frac{\left(x^2+2x+1\right)+4}{x+1}=\frac{\left(x+1\right)^2+4}{x+1}=x+1+\frac{4}{x+1}\)

Để \(A=x+1+\frac{4}{x+1}\) là số nguyên <=> \(\frac{4}{x+1}\) là số nguyên 

=> x + 1 \(\inƯ\left(4\right)\) = { - 4; - 2; - 1; 1; 2; 4 }

=> x = { - 5; - 3; - 2; 0; 1; 3 }

Vậy x = { - 5; - 3; - 2; 0; 1; 3 }

6 tháng 4 2017

Để biểu thức A đạt giá trị nguyên thì phân số \(\frac{x^2+2x+5}{x+1}\)phải đạt giá trị nguyên.

\(\Rightarrow x^2+2x+5⋮x+1\)

\(\Rightarrow x.\left(x+1\right)+2x+5-x⋮x+1\)

\(\Rightarrow x+5⋮x+1\)

\(\Rightarrow\left(x+1\right)+4⋮x+1\)

\(\Rightarrow4⋮x+1\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;+1;+2;+4\right\}\)

\(\Rightarrow x\in\left\{-5;-3;-2;0;+1;+3\right\}\)

vậy \(x\in\left\{-5;-3;-2;0;+1;+3\right\}\)thì A đạt giá trị nguyên

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

13 tháng 5 2015

Điều kiện: x \(\ge\)0; x \(\ne\) 4;x \(\ne\) 9 

\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)}\)

\(A=\frac{2\sqrt{x}-9-\left(x-9\right)+\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\)

\(A=\frac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A nguyên thì \(\frac{4}{\sqrt{x}-3}\) nguyên <=> \(\sqrt{x}-3\) \(\in\)Ư(4)  = {4;-4;2;-2;1;-1}

\(\sqrt{x}-3\)4-42-21-1
\(\sqrt{x}\)7-15142
x49loại25116

Đối chiếu điều kiện => x \(\in\) {49;25;1;16}

1 tháng 11 2020

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)

=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2

Đề sai à --

5 tháng 11 2020

kkk. thế mới hỏi chứ. đề đấy: đố giải được