K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

`Answer:`

undefined

24 tháng 12 2019

Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|\)

\(=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right).\left(2013-2x\right)\ge0\)

                       \(\Leftrightarrow\left(2x-2\right).\left(2x-2013\right)\le0\)

                  \(\Rightarrow\hept{\begin{cases}2x-2\ge0\\2x-2013\le0\end{cases}\Rightarrow\hept{\begin{cases}2x\ge2\\2x\le2013\end{cases}}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)

                 \(\Rightarrow Min\left(A\right)=2011\Leftrightarrow1\le x\le\frac{2013}{2}\)

4 tháng 4 2020

GTNN:

Ta có M= |x-2013|+|x-2|= |2013-x|+|x-2| >= |x-2+2013-x|=2011

(vì giá trị tuyệt đối của một tổng luôn nhỏ hơn hoặc bằng tổng của các giá trị tuyệt đối)

Nên min M =2011. Dấu ''='' xảy ra khi và chỉ khi (2013-x)(x-2) >= 0

<=> 2<=x<=2013.

20 tháng 5 2021

Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)

Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất

TH1: |2x-2|=0 Suy ra 2x=2=>x=1

A= 0+|2.2-2013|=2009

TH2:|2x-2013|=0=>2x=2013=>x=1006,5

A=|2x-2|+|2x-2013|=|2.1006,5-2|=2011

Vì 2011>2009 suy ra MinA =2009

 

20 tháng 5 2021

sai rồi

 

NV
17 tháng 1 2024

Áp dụng BĐT trị tuyệt đối ta có:

\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

\(\Rightarrow A_{min}=2011\)

Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\Rightarrow1\le x\le1006\)

23 tháng 10 2019

\(x^2+7x+12=x^2+3x+4x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)

=> \(B=\left(x+3\right)\left(x+4\right)\left(x-2\right)\left(x-1\right)\)

\(=\left[\left(x+3\right)\left(x-1\right)\right]\left[\left(x+4\right)\left(x-2\right)\right]+2013\)

\(=\left[x^2+2x-3\right]\left[x^2+2x-8\right]+2013\)

Đặt : \(t=x^2+2x-3\)

Ta có: \(B=t\left(t-5\right)+2013=t^2-5t+2013=t^2-2.t.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+2013\)

\(=\left(t-\frac{5}{2}\right)^2+\frac{8027}{4}\ge\frac{8027}{4}\)

"=" xảy ra <=> \(t=\frac{5}{2}\Leftrightarrow x^2+2x-3=\frac{5}{2}\Leftrightarrow\left(x+1\right)^2=\frac{13}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{13}{2}}-1\\x=-\sqrt{\frac{13}{2}}-1\end{cases}}\)(tm)

Vậy min B = 8027/4 tại x =....