Cho hình vuông ABCD tâm O. Gọi K,N lần lượt là trung điểm của AB,BC . Gọi F là trung điểm của NC. Từ A kẻ đường thằng song song với KF cắt CD tại G. Chứng minh FG là tiếp tuyến của (O) nội tiếp hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OI vuông góc với FG tại I. Ta chứng minh OI=OM =a/2 (a là cạnh của hình vuông)
KHI đó GF tiếp xúc với đường tròn tại I
Hai tam giác vuông ADG và FBK có:
\(\widehat{DAG}=\widehat{KFB}\)( \(\widehat{A_1}+\widehat{A_2}=90^0\Rightarrow\widehat{A_1}+\widehat{K_1}=90^0\)MÀ \(\widehat{K_1}+\widehat{KFB}=90^0\))
\(\Rightarrow\Delta ADG~\Delta FBK\Rightarrow\frac{AD}{FB}=\frac{DG}{BK}\)
\(\Rightarrow DG=\frac{AD}{FB}.BK=\frac{a}{3a}.\frac{a}{2}=\frac{2a}{3}\)
Từ đó \(CG=\frac{a}{3};MG=\frac{a}{2}-\frac{a}{3}=\frac{a}{6}\)
Trong tam giác vuông CGF có:
\(GF^2=CF^2+CG^2=\frac{a^2}{16}+\frac{a^2}{9}=\frac{25a^2}{144}\Rightarrow CF=\frac{5a}{12}\)
Ta có: \(S_{OGF}=S_{OMCN}-\left(S_{ÒNF}+S_{OMG}+S_{CGF}\right)\)\(=\frac{a^2}{4}-\left(\frac{a^2}{16}+\frac{a^2}{24}+\frac{a^2}{24}\right)=\frac{5a^2}{48}\)(1)
Mặt khác: \(S_{OGF}=\frac{1}{2}.OI.GF=OI.\frac{5a}{24}\)(2)
Từ (1);(2) \(\Rightarrow\frac{5a^2}{48}=OI.\frac{5a}{24}\Rightarrow OI=\frac{a}{2}\)
Vậy GF tiếp xúc với đường tròn tâm O tại I
đánh dấu A1 vào góc DAG , A2 vào góc BAC, K1 vào góc BKC. kẻ OM vuông góc DC, kẻ OG, kẻ OI vuông góc GF