So sánh 2 số \(3^{21}\)và\(2^{31}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b ) 339và 1121
339 < 342 ;
342=36,7=﴾36 ﴿7=7297
11 21= 113.7=﴾113)7=13317
Vì 729 7< 13317=> 3 42<11 21
=339<1121
\(3^{21}>3^{20}\)
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(9^{10}< 3^{21}\)
\(2^{31}>2^{30}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(8^{10}< 2^{31}\)
\(\Rightarrow8^{10}< 2^{31}< 9^{10}< 3^{21}\)
\(\Rightarrow3^{21}>2^{31}\)
2^31 < 2^ 33
2^33 = (2^11)^3 = 2048 ^3
3^21 = ( 3^7 ) ^3 = 2187 ^ 3
Vì 2048 < 2187 => 2048^3 < 2187 ^3 => 2^33 < 3 ^21 => 2^31 < 3^21
\(3^{21}=3^{20}.3=\left(3^2\right)^{10}.3=9^{10}.3\)
\(2^{31}=2^{30}.2=\left(2^3\right)^{10}.2=8^{10}.2\)
\(9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)
Vậy \(3^{21}>2^{31}\)
2^31=2^30*2
3^21=3^20*3
mà 2^30<3^20 và 2<3
nên 2^31<3^21
ta có: 321 = 320.3 = (32)10.3 = 910.3
231 = 230.2 = (23)10.2 = 810.2
=> 910 > 810
3> 2
=> 910.3 > 810 .2
=> 321 > 231
321=320.3=(32)10.3=910.3
231=230.2=(23)10.2=810.2
910.3>810.2 =>a>b
vậy a>b
321=3.320=3.910
231=2.230=2.810
Vì 3>2;9>8 => 3.910>2.810
Hay 321>231
321=3.320=3.910
231=2.230=2.810
Vì 3.910>2.810 nên 321>231