K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

a)

  \(n⋮n-2\Leftrightarrow n-2+2⋮n-2\Leftrightarrow2⋮n-2\)

Do đó \(n-2\inƯ\left(2\right)=\left\{1;2\right\}\)

Suy ra n=3 và n=4

b)

21 chia hết cho 2n+5 nên \(2n+5\inƯ\left(21\right)=\left\{1;3;7;21\right\}\)

Vì n thuộc n nên \(2n+5\in\left\{7;21\right\}\)

Tìm được n=1 và n=8. 

Phần c tương tự nha bạn

8 tháng 12 2018

1 và 3 cũng thuộc N mà

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

8 tháng 10 2017

a) (n+2) \(⋮\) (n-1)

vì (n-1)\(⋮\) (n-1)

=>(n+2)-(n-1)\(⋮\left(n-1\right)\)

=>(n+2-n+1)\(⋮\) (n-1)

=> 3\(⋮\) (n-1)

=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}

ta có bảng

n-1 -1 1 -3

3

n 0 2 -2 4
loại

vậy n\(\in\) { 0;2;4}

8 tháng 10 2017

b) \(\left(2n+7\right)⋮\left(n+1\right)\)

\(\left(n+1\right)⋮\left(n+1\right)\)

=>\(2\left(n+1\right)⋮\left(n+1\right)\)

=> \(\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)

=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)

=>\(5⋮\left(n+1\right)\)

=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

TA CÓ BẢNG

n+1 -5 -1 1 5
n -6 -2 0 4
loại loại

vậy \(n\in\left\{0;4\right\}\)

a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;1;5;-2\right\}\)

d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)

15 tháng 12 2016

làm câu

27 tháng 9 2015

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá