K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều 

2 tháng 1 2018

post ít một thôi

9 tháng 8 2017

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

9 tháng 8 2017

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)

NV
7 tháng 1

Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

\(\Rightarrow2A-A=1-\dfrac{1}{2^{100}}\)

\(\Rightarrow A=1-\dfrac{1}{2^{100}}< 1\) (đpcm)

7 tháng 1

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

\(2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

\(2A-A=1-\dfrac{1}{2^{100}}\)

\(A=1-\dfrac{1}{2^{100}}< 1\left(đpcm\right)\)