K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB,AC là các tiếp tuyên

nên AB=AC

mà OB=OC

nên OA là đường trung trực của BC

=>OA vuông góc với BC

b: Xét (O) có

ΔBCD nội tiếp

DC là đường kính

Do đo: ΔBDC vuông tại B

=>BD//OA
c: góc ABM+góc OBM=90 độ

góc HBM+góc OMB=90 độ

mà góc OBM=góc OMB

nên góc ABM=góc HBM

=>BM là phân giác của góc ABH

Xét ΔABC có

AH,BM là các đường phân giác

AH cắt BM tại M

Do đó: M là tâm đường tròn nội tiếp ΔABC

22 tháng 12 2018

O A B C H D K I

a, Vì OB = OC ( =R )

        AB = AC (tiếp tuyến)

=> OA là trung trực BC

=> OA vuông góc BC
Vì AB là tiếp tuyến (O)

\(\Rightarrow OB\perp AB\)

=> t/g OAB vuông tại B

Xét t/g OAB vuông tại B có BH là đường cao 

=>\(OH.OA=OB^2=R^2\)(hệ thức lượng)

b,* Xét \(\Delta\)BCD có : OB = OC = OD (=R)

=> \(\Delta\)BCD vuông tại C

=> \(BC\perp CD\)

Mà  \(BC\perp OA\)

=> CD // OA 

16 tháng 11 2021

Lộn môn gòi -.-

16 tháng 11 2021

a, Theo tc 2 tiếp tuyến cắt nhau: AB=AC nên A∈trung trực BC

Mà OB=OC=R nên O∈trung trực BC

Do đó OA là trung trực BC hay OA⊥BC

Áp dụng HTL: \(OA\cdot OH=OB^2=R^2\)

b, \(\widehat{BCD}=90^0\) (góc nt chắn nửa đg tròn) nên CD⊥BC

Mà OA⊥BC nên CD//AO

16 tháng 11 2021

b, AO//CD nên \(\widehat{AOB}=\widehat{CDK}\) (đồng vị)

Do đó \(\Delta AOB\sim\Delta CDK\left(g.g\right)\)

\(\Rightarrow\dfrac{AB}{CK}=\dfrac{AO}{CO}\Rightarrow AB\cdot CO=CK\cdot AO\)

Mà \(AC=AB\Rightarrow AC\cdot CO=CK\cdot AO\)

c, Tiếp tuyến tại D của (O) cắt AC tại E

Theo tc 2 tt cắt nhau: \(AC=AB;CE=ED\Rightarrow\dfrac{AC}{CE}=\dfrac{AB}{ED}\)

Lại có AB//CK//DE(⊥BD) nên \(\dfrac{AC}{CE}=\dfrac{AI}{ID};\widehat{BAI}=\widehat{IDE}\) (so le trong)

\(\Rightarrow\dfrac{AB}{ED}=\dfrac{AI}{ID}\)

Do đó \(\Delta ABI\sim\Delta DEI\left(c.g.c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{EID}\)

Mà 2 góc này ở vị trí đối đỉnh và A,I,D thẳng hàng nên B,I,E thẳng hàng

Talet: \(\dfrac{CI}{ED}=\dfrac{AI}{AD};\dfrac{IK}{ED}=\dfrac{BK}{BD};\dfrac{AI}{AD}=\dfrac{BK}{BD}\)

\(\Rightarrow\dfrac{CI}{ED}=\dfrac{IK}{ED}\Rightarrow CI=IK\) hay I là trung điểm CK

\(\Rightarrow\dfrac{S_{BIK}}{S_{BCK}}=\dfrac{IK}{CK}=\dfrac{1}{2}\)

Mà \(\dfrac{S_{CHK}}{S_{BCK}}=\dfrac{CH}{BC}=\dfrac{1}{2}\) (H là trung điểm BC, bạn tự cm)

Vậy \(S_{BIK}=S_{CHK}\)

17 tháng 12 2021

Mà bạn có thể vẽ hình đc ko

18 tháng 12 2021

a:Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

b: Ta có: \(\widehat{ABI}+\widehat{OBI}=\widehat{OBA}=90^0\)

\(\widehat{HBI}+\widehat{OIB}=90^0\)(ΔHBI vuông tại H)

mà \(\widehat{OBI}=\widehat{OIB}\)

nên \(\widehat{ABI}=\widehat{HBI}=\widehat{CBI}\)

=>BI là phân giác của góc ABC

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

Xét ΔBAC có

AH,BI là các đường phân giác

AH cắt BI tại I

Do đó: I là tâm đường tròn nội tiếp ΔBAC

a, Để chứng minh \(OH \times OA = \pi^2\), chúng ta có thể sử dụng định lí thứ ba của đường tròn và định lí Euclid về tiếp tuyến và tiếp tuyến ngoại tiếp. 

 

Gọi \(R\) là bán kính của đường tròn, \(O\) là tâm của đường tròn, \(A\) là điểm nằm ngoài đường tròn, \(B\) và \(C\) là các điểm tiếp tuyến từ \(A\) đến đường tròn. \(H\) là giao điểm giữa \(OA\) và \(BC\).

 

Theo định lí thứ ba của đường tròn, ta có \(OH\) là đoạn trung bình của \(OA\) trong tam giác \(OAB\). Điều này có nghĩa là \(OH\) là trung bình hòa của các phần bằng nhau \(OA\) và \(OB\).

 

\(OA = OB = R\) (bán kính của đường tròn).

 

\(OH = \frac{OA + OB}{2} = \frac{2R}{2} = R\).

 

Vậy, \(OH = R\).

 

Để chứng minh \(OH \times OA = \pi^2\), ta có \(OH \times OA = R \times R = R^2\).

 

Nhưng theo định nghĩa, \(R\) là bán kính của đường tròn, nên \(R^2\) chính là \(\pi^2\) (bán kính mũ hai). Vì vậy, \(OH \times OA = \pi^2\).

 

b, Để chứng minh \(I\) là tâm của đường tròn nội tiếp tam giác \(ABC\), chúng ta có thể sử dụng các định lí về tiếp tuyến và tiếp tuyến ngoại tiếp.

 

Gọi \(I\) là giao điểm của \(OA\) với đường tròn. Khi đó, theo định lí về tiếp tuyến ngoại tiếp, \(OA\) vuông góc với \(AB\) tại \(B\) và \(OA\) vuông góc với \(AC\) tại \(C\).

 

Vì OA là đường trung trực của BC (do H là giao điểm giữa OA và BC, nên OH cũng là đường trung trực của BC.)

 

Nếu I là tâm của đường tròn nội tiếp tam giác ABC, thì OI cũng là đường trung trực của BC

 

Do đó, OHvà OI là cùng một đường trung trực của BC, nên OH = OI.

 

Vậy, I là tâm của đường tròn nội tiếp tam giác ABC.

14 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC
=>ΔABC cân tại A

b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại I và I là trung điểm của BC

c: Xét ΔOBA vuông tại B có \(BO^2+BA^2=OA^2\)

=>\(BA^2+3^2=5^2\)

=>\(BA^2=25-9=16\)

=>\(BA=\sqrt{16}=4\left(cm\right)\)

Xét ΔBOA vuông tại B có BI là đường cao

nên \(BI\cdot OA=BO\cdot BA\)

=>\(BI\cdot5=3\cdot4=12\)

=>BI=12/5=2,4(cm)

d: Ta có: ΔABI vuông tại I

=>\(IB^2+AI^2=AB^2\)

=>\(IB^2=AB^2-AI^2\left(3\right)\)

Ta có: ΔOIC vuông tại I

=>\(OC^2=OI^2+CI^2\)

=>\(CI^2=OC^2-OI^2\left(4\right)\)

I là trung điểm của BC

=>IB=IC(5)

Từ (3),(4),(5) suy ra \(AB^2-AI^2=OC^2-OI^2\)

=>\(AB^2-OC^2=AI^2-OI^2\)