cho a,b,c>0. CMR :\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta.
b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).
chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm
áp dụng bất đẳng thức bu nhi a
ta có \(3\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
lại có a/b+b/c+c/a \(\ge\)3 (bđt cauchy)
nhân từng vế ta có \(3\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\left(\frac{a}{b}+\frac{b}{a}+\frac{a}{c}\right)\ge3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)
suy ra đpcm
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Bài gắt quá, em cày mãi không ra:( nào là phân tích vế phải,sos từm lưm... Cuối cùng chuyển vế cho gọn:v Nhưng mà em ko chắc :((
BĐT \(\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\frac{a^2b+a^2c-ab^2+ac^2}{\left(b^2+c^2\right)\left(b+c\right)}\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\frac{ab\left(a-b\right)-ac\left(c-a\right)}{\left(b^2+c^2\right)\left(b+c\right)}\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma_{cyc}ab\left(a-b\right)\left[\frac{\left(c^2+a^2\right)\left(c+a\right)-\left(b^2+c^2\right)\left(b+c\right)}{\left(b^2+c^2\right)\left(c^2+a^2\right)\left(b+c\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma_{cyc}ab\left(a-b\right)\left[\frac{\left(a-b\right)\left(a^2+b^2+c^2+ab+bc+ca\right)}{\left(b^2+c^2\right)\left(c^2+a^2\right)\left(b+c\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\left(a^2+b^2+c^2+ab+bc+ca\right).\Sigma_{cyc}\frac{ab\left(a-b\right)^2}{\left(b^2+c^2\right)\left(c^2+a^2\right)\left(b+c\right)\left(c+a\right)}\ge0\) (đúng)
Đẳng thức xảy ra khi a = b = c
Ta có a2/(b+c) + (b+c)/4 >= a
b2/(c+a) + (c+a)/4 >= b
c2/(a+b) + (a+b)/4 >= c
Từ đó ta có a2/(b+c) + b2/(c+a) + c2/(a+b) >= (a+b+c)/2
Áp dụng bất dẳng thức Cauchy - Schwartz dạng engel, ta có:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi: \(\frac{a}{a+b}=\frac{b}{b+c}=\frac{c}{c+a}\)
zzzzzz